xai-cl / ssl_models /simsiam.py
Annonymous
Upload 4 files
b157c29
raw
history blame
3.5 kB
import torch
import torch.nn as nn
import torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
"""from https://github.com/facebookresearch/simsiam"""
class SimSiam(nn.Module):
def __init__(self, base_encoder, dim, pred_dim):
"""
dim: feature dimension (default: 2048)
pred_dim: hidden dimension of the predictor (default: 512)
symetric is True only when training
"""
super(SimSiam, self).__init__()
# create the encoder
# num_classes is the output fc dimension, zero-initialize last BNs
self.encoder = base_encoder(num_classes=dim, zero_init_residual=True)
# build a 3-layer projector
prev_dim = self.encoder.fc.weight.shape[1]
self.encoder.fc = nn.Sequential(nn.Linear(prev_dim, prev_dim, bias=False),
nn.BatchNorm1d(prev_dim),
nn.ReLU(inplace=True), # first layer
nn.Linear(prev_dim, prev_dim, bias=False),
nn.BatchNorm1d(prev_dim),
nn.ReLU(inplace=True), # second layer
self.encoder.fc,
nn.BatchNorm1d(dim, affine=False)) # output layer
self.encoder.fc[6].bias.requires_grad = False # hack: not use bias as it is followed by BN
# build a 2-layer predictor
self.predictor = nn.Sequential(nn.Linear(dim, pred_dim, bias=False),
nn.BatchNorm1d(pred_dim),
nn.ReLU(inplace=True), # hidden layer
nn.Linear(pred_dim, dim)) # output layer
def forward(self, x1, x2):
z1 = self.encoder(x1).detach() # NxC
z2 = self.encoder(x2).detach() # NxC
p1 = self.predictor(z1) # NxC
p2 = self.predictor(z2) # NxC
loss = -(nn.CosineSimilarity(dim=1)(p1, z2).mean() + nn.CosineSimilarity(dim=1)(p2, z1).mean()) * 0.5
return loss
class ResNet(nn.Module):
def __init__(self, backbone):
super().__init__()
modules = list(backbone.children())[:-2]
self.net = nn.Sequential(*modules)
def forward(self, x):
return self.net(x).mean(dim=[2, 3])
class RestructuredSimSiam(nn.Module):
def __init__(self, model):
super().__init__()
self.encoder = ResNet(model.encoder)
self.mlp_encoder = model.encoder.fc
self.mlp_encoder[6].bias.requires_grad = False
self.contrastive_head = model.predictor
def forward(self, x, run_head = True):
x = self.mlp_encoder(self.encoder(x)) # don't detach since we will do backprop for explainability
if run_head:
x = self.contrastive_head(x)
return x
def get_simsiam(ckpt_path = 'checkpoint_0099.pth.tar'):
model = SimSiam(base_encoder = torchvision.models.resnet50,
dim = 2048,
pred_dim = 512)
checkpoint = torch.load('pretrained_models/simsiam_models/'+ ckpt_path, map_location='cpu')
state_dic = checkpoint['state_dict']
state_dic = {k.replace("module.", ""): v for k, v in state_dic.items()}
model.load_state_dict(state_dic)
restructured_model = RestructuredSimSiam(model)
return restructured_model.to(device)