Annikaijak's picture
Upload 37 files
a1aa76f verified
raw
history blame
6.39 kB
import json
import time
import pickle
import joblib
import hopsworks
import streamlit as st
from geopy import distance
import plotly.express as px
import folium
from streamlit_folium import st_folium
from functions import *
def print_fancy_header(text, font_size=22, color="#ff5f27"):
res = f'<span style="color:{color}; font-size: {font_size}px;">{text}</span>'
st.markdown(res, unsafe_allow_html=True)
@st.cache_data()
def get_batch_data_from_fs(td_version, date_threshold):
st.write(f"Retrieving the Batch data since {date_threshold}")
feature_view.init_batch_scoring(training_dataset_version=td_version)
batch_data = feature_view.get_batch_data(start_time=date_threshold)
return batch_data
@st.cache_data()
def download_model(name="air_quality_xgboost_model", version=1):
mr = project.get_model_registry()
retrieved_model = mr.get_model(
name="air_quality_xgboost_model",
version=1
)
saved_model_dir = retrieved_model.download()
return saved_model_dir
def plot_pm2_5(df):
# create figure with plotly express
fig = px.line(df, x='date', y='pm2_5', color='city_name')
# customize line colors and styles
fig.update_traces(mode='lines+markers')
fig.update_layout({
'plot_bgcolor': 'rgba(0, 0, 0, 0)',
'paper_bgcolor': 'rgba(0, 0, 0, 0)',
'legend_title': 'City',
'legend_font': {'size': 12},
'legend_bgcolor': 'rgba(0, 0, 0, 0)',
'xaxis': {'title': 'Date'},
'yaxis': {'title': 'PM2.5'},
'shapes': [{
'type': 'line',
'x0': datetime.datetime.now().strftime('%Y-%m-%d'),
'y0': 0,
'x1': datetime.datetime.now().strftime('%Y-%m-%d'),
'y1': df['pm2_5'].max(),
'line': {'color': 'red', 'width': 2, 'dash': 'dashdot'}
}]
})
# show plot
st.plotly_chart(fig, use_container_width=True)
with open('target_cities.json') as json_file:
target_cities = json.load(json_file)
#########################
st.title('🌫 Air Quality Prediction 🌦')
st.write(3 * "-")
print_fancy_header('\nπŸ“‘ Connecting to Hopsworks Feature Store...')
st.write("Logging... ")
# (Attention! If the app has stopped at this step,
# please enter your Hopsworks API Key in the commmand prompt.)
project = hopsworks.login()
fs = project.get_feature_store()
st.write("βœ… Logged in successfully!")
st.write("Getting the Feature View...")
feature_view = fs.get_feature_view(
name = 'air_quality_fv',
version = 1
)
st.write("βœ… Success!")
# I am going to load data for of last 60 days (for feature engineering)
today = datetime.date.today()
date_threshold = today - datetime.timedelta(days=60)
st.write(3 * "-")
print_fancy_header('\n☁️ Retriving batch data from Feature Store...')
batch_data = get_batch_data_from_fs(td_version=1,
date_threshold=date_threshold)
st.write("Batch data:")
st.write(batch_data.sample(5))
saved_model_dir = download_model(
name="air_quality_xgboost_model",
version=1
)
pipeline = joblib.load(saved_model_dir + "/xgboost_pipeline.pkl")
st.write("\n")
st.write("βœ… Model was downloaded and cached.")
st.write(3 * '-')
st.write("\n")
print_fancy_header(text="πŸ– Select the cities using the form below. \
Click the 'Submit' button at the bottom of the form to continue.",
font_size=22)
dict_for_streamlit = {}
for continent in target_cities:
for city_name, coords in target_cities[continent].items():
dict_for_streamlit[city_name] = coords
selected_cities_full_list = []
with st.form(key="user_inputs"):
print_fancy_header(text='\nπŸ—Ί Here you can choose cities from the drop-down menu',
font_size=20, color="#00FFFF")
cities_multiselect = st.multiselect(label='',
options=dict_for_streamlit.keys())
selected_cities_full_list.extend(cities_multiselect)
st.write("_" * 3)
print_fancy_header(text="\nπŸ“Œ To add a city using the interactive map, click somewhere \
(for the coordinates to appear)",
font_size=20, color="#00FFFF")
my_map = folium.Map(location=[42.57, -44.092], zoom_start=2)
# Add markers for each city
for city_name, coords in dict_for_streamlit.items():
folium.CircleMarker(
location=coords
).add_to(my_map)
my_map.add_child(folium.LatLngPopup())
res_map = st_folium(my_map, width=640, height=480)
try:
new_lat, new_long = res_map["last_clicked"]["lat"], res_map["last_clicked"]["lng"]
# Calculate the distance between the clicked location and each city
distances = {city: distance.distance(coord, (new_lat, new_long)).km for city, coord in dict_for_streamlit.items()}
# Find the city with the minimum distance and print its name
nearest_city = min(distances, key=distances.get)
print_fancy_header(text=f"You have selected {nearest_city} using map", font_size=18, color="#52fa23")
selected_cities_full_list.append(nearest_city)
st.write(label_encoder.transform([nearest_city])[0])
except Exception as err:
print(err)
pass
submit_button = st.form_submit_button(label='Submit')
if submit_button:
st.write('Selected cities:', selected_cities_full_list)
st.write(3*'-')
dataset = batch_data
dataset = dataset.sort_values(by=["city_name", "date"])
st.write("\n")
print_fancy_header(text='\n🧠 Predicting PM2.5 for selected cities...',
font_size=18, color="#FDF4F5")
st.write("")
preds = pd.DataFrame(columns=dataset.columns)
for city_name in selected_cities_full_list:
st.write(f"\t * {city_name}...")
features = dataset.loc[dataset['city_name'] == city_name]
print(features.head())
features['pm2_5'] = pipeline.predict(features)
preds = pd.concat([preds, features])
st.write("")
print_fancy_header(text="πŸ“ˆResults πŸ“‰",
font_size=22)
plot_pm2_5(preds[preds['city_name'].isin(selected_cities_full_list)])
st.write(3 * "-")
st.subheader('\nπŸŽ‰ πŸ“ˆ 🀝 App Finished Successfully 🀝 πŸ“ˆ πŸŽ‰')
st.button("Re-run")