Spaces:
Sleeping
Sleeping
import json | |
import time | |
import pickle | |
import joblib | |
import hopsworks | |
import streamlit as st | |
from geopy import distance | |
import plotly.express as px | |
import folium | |
from streamlit_folium import st_folium | |
from functions import * | |
def print_fancy_header(text, font_size=22, color="#ff5f27"): | |
res = f'<span style="color:{color}; font-size: {font_size}px;">{text}</span>' | |
st.markdown(res, unsafe_allow_html=True) | |
def get_batch_data_from_fs(td_version, date_threshold): | |
st.write(f"Retrieving the Batch data since {date_threshold}") | |
feature_view.init_batch_scoring(training_dataset_version=td_version) | |
batch_data = feature_view.get_batch_data(start_time=date_threshold) | |
return batch_data | |
def download_model(name="air_quality_xgboost_model", version=1): | |
mr = project.get_model_registry() | |
retrieved_model = mr.get_model( | |
name="air_quality_xgboost_model", | |
version=1 | |
) | |
saved_model_dir = retrieved_model.download() | |
return saved_model_dir | |
def plot_pm2_5(df): | |
# create figure with plotly express | |
fig = px.line(df, x='date', y='pm2_5', color='city_name') | |
# customize line colors and styles | |
fig.update_traces(mode='lines+markers') | |
fig.update_layout({ | |
'plot_bgcolor': 'rgba(0, 0, 0, 0)', | |
'paper_bgcolor': 'rgba(0, 0, 0, 0)', | |
'legend_title': 'City', | |
'legend_font': {'size': 12}, | |
'legend_bgcolor': 'rgba(0, 0, 0, 0)', | |
'xaxis': {'title': 'Date'}, | |
'yaxis': {'title': 'PM2.5'}, | |
'shapes': [{ | |
'type': 'line', | |
'x0': datetime.datetime.now().strftime('%Y-%m-%d'), | |
'y0': 0, | |
'x1': datetime.datetime.now().strftime('%Y-%m-%d'), | |
'y1': df['pm2_5'].max(), | |
'line': {'color': 'red', 'width': 2, 'dash': 'dashdot'} | |
}] | |
}) | |
# show plot | |
st.plotly_chart(fig, use_container_width=True) | |
with open('target_cities.json') as json_file: | |
target_cities = json.load(json_file) | |
######################### | |
st.title('π« Air Quality Prediction π¦') | |
st.write(3 * "-") | |
print_fancy_header('\nπ‘ Connecting to Hopsworks Feature Store...') | |
st.write("Logging... ") | |
# (Attention! If the app has stopped at this step, | |
# please enter your Hopsworks API Key in the commmand prompt.) | |
project = hopsworks.login() | |
fs = project.get_feature_store() | |
st.write("β Logged in successfully!") | |
st.write("Getting the Feature View...") | |
feature_view = fs.get_feature_view( | |
name = 'air_quality_fv', | |
version = 1 | |
) | |
st.write("β Success!") | |
# I am going to load data for of last 60 days (for feature engineering) | |
today = datetime.date.today() | |
date_threshold = today - datetime.timedelta(days=60) | |
st.write(3 * "-") | |
print_fancy_header('\nβοΈ Retriving batch data from Feature Store...') | |
batch_data = get_batch_data_from_fs(td_version=1, | |
date_threshold=date_threshold) | |
st.write("Batch data:") | |
st.write(batch_data.sample(5)) | |
saved_model_dir = download_model( | |
name="air_quality_xgboost_model", | |
version=1 | |
) | |
pipeline = joblib.load(saved_model_dir + "/xgboost_pipeline.pkl") | |
st.write("\n") | |
st.write("β Model was downloaded and cached.") | |
st.write(3 * '-') | |
st.write("\n") | |
print_fancy_header(text="π Select the cities using the form below. \ | |
Click the 'Submit' button at the bottom of the form to continue.", | |
font_size=22) | |
dict_for_streamlit = {} | |
for continent in target_cities: | |
for city_name, coords in target_cities[continent].items(): | |
dict_for_streamlit[city_name] = coords | |
selected_cities_full_list = [] | |
with st.form(key="user_inputs"): | |
print_fancy_header(text='\nπΊ Here you can choose cities from the drop-down menu', | |
font_size=20, color="#00FFFF") | |
cities_multiselect = st.multiselect(label='', | |
options=dict_for_streamlit.keys()) | |
selected_cities_full_list.extend(cities_multiselect) | |
st.write("_" * 3) | |
print_fancy_header(text="\nπ To add a city using the interactive map, click somewhere \ | |
(for the coordinates to appear)", | |
font_size=20, color="#00FFFF") | |
my_map = folium.Map(location=[42.57, -44.092], zoom_start=2) | |
# Add markers for each city | |
for city_name, coords in dict_for_streamlit.items(): | |
folium.CircleMarker( | |
location=coords | |
).add_to(my_map) | |
my_map.add_child(folium.LatLngPopup()) | |
res_map = st_folium(my_map, width=640, height=480) | |
try: | |
new_lat, new_long = res_map["last_clicked"]["lat"], res_map["last_clicked"]["lng"] | |
# Calculate the distance between the clicked location and each city | |
distances = {city: distance.distance(coord, (new_lat, new_long)).km for city, coord in dict_for_streamlit.items()} | |
# Find the city with the minimum distance and print its name | |
nearest_city = min(distances, key=distances.get) | |
print_fancy_header(text=f"You have selected {nearest_city} using map", font_size=18, color="#52fa23") | |
selected_cities_full_list.append(nearest_city) | |
st.write(label_encoder.transform([nearest_city])[0]) | |
except Exception as err: | |
print(err) | |
pass | |
submit_button = st.form_submit_button(label='Submit') | |
if submit_button: | |
st.write('Selected cities:', selected_cities_full_list) | |
st.write(3*'-') | |
dataset = batch_data | |
dataset = dataset.sort_values(by=["city_name", "date"]) | |
st.write("\n") | |
print_fancy_header(text='\nπ§ Predicting PM2.5 for selected cities...', | |
font_size=18, color="#FDF4F5") | |
st.write("") | |
preds = pd.DataFrame(columns=dataset.columns) | |
for city_name in selected_cities_full_list: | |
st.write(f"\t * {city_name}...") | |
features = dataset.loc[dataset['city_name'] == city_name] | |
print(features.head()) | |
features['pm2_5'] = pipeline.predict(features) | |
preds = pd.concat([preds, features]) | |
st.write("") | |
print_fancy_header(text="πResults π", | |
font_size=22) | |
plot_pm2_5(preds[preds['city_name'].isin(selected_cities_full_list)]) | |
st.write(3 * "-") | |
st.subheader('\nπ π π€ App Finished Successfully π€ π π') | |
st.button("Re-run") | |