Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
import random | |
import time | |
from dotenv import load_dotenv | |
import pickle | |
from huggingface_hub import Repository | |
from PyPDF2 import PdfReader | |
from streamlit_extras.add_vertical_space import add_vertical_space | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import OpenAI | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.callbacks import get_openai_callback | |
import os | |
import uuid | |
import json | |
import pandas as pd | |
import pydeck as pdk | |
from urllib.error import URLError | |
import chromadb | |
client = chromadb.Client() | |
collection = chroma_client.create_collection(name="Kosten_Strukturdaten") | |
# Initialize session state variables | |
if 'chat_history_page1' not in st.session_state: | |
st.session_state['chat_history_page1'] = [] | |
if 'chat_history_page2' not in st.session_state: | |
st.session_state['chat_history_page2'] = [] | |
if 'chat_history_page3' not in st.session_state: | |
st.session_state['chat_history_page3'] = [] | |
# This session ID will be unique per user session and consistent across all pages. | |
if 'session_id' not in st.session_state: | |
st.session_state['session_id'] = str(uuid.uuid4()) | |
# Step 1: Clone the Dataset Repository | |
repo = Repository( | |
local_dir="Private_Book", # Local directory to clone the repository | |
repo_type="dataset", # Specify that this is a dataset repository | |
clone_from="Anne31415/Private_Book", # Replace with your repository URL | |
token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate | |
) | |
repo.git_pull() # Pull the latest changes (if any) | |
# Step 1: Clone the ChatSet Repository - save all the chats anonymously | |
repo2 = Repository( | |
local_dir="Chat_Store", # Local directory to clone the repository | |
repo_type="dataset", # Specify that this is a dataset repository | |
clone_from="Anne31415/Chat_Store", # Replace with your repository URL | |
token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate | |
) | |
repo.git_pull() # Pull the latest changes (if any) | |
# Step 2: Load the PDF File | |
pdf_path = "Private_Book/KH_Reform230124.pdf" # Replace with your PDF file path | |
pdf_path2 = "Private_Book/Buch_23012024.pdf" | |
pdf_path3 = "Private_Book/Kosten_Strukturdaten_RAG_vorbereited.pdf" | |
api_key = os.getenv("OPENAI_API_KEY") | |
# Retrieve the API key from st.secrets | |
import chromadb | |
# Corrected variable name for consistency | |
chroma_client = chromadb.Client() | |
# Create a collection for your embeddings | |
collection_name = "Kosten_Strukturdaten" | |
collection = chroma_client.create_collection(name=collection_name) | |
# Function to extract text from a PDF file | |
def extract_text_from_pdf(pdf_path): | |
text = "" | |
reader = PdfReader(pdf_path) | |
for page in reader.pages: | |
text += page.extract_text() + " " # Concatenate text from each page | |
return text | |
# Example usage | |
pdf_text = extract_text_from_pdf(pdf_path3) | |
# Add the extracted text from PDF to the Chroma collection | |
collection.add( | |
documents=[pdf_text], | |
metadatas=[{"source": pdf_path3}], # Add any relevant metadata for your document | |
ids=[("Kosten_Strukturdaten")] | |
) | |
def load_vector_store(file_path, store_name, force_reload=False): | |
local_repo_path = "Private_Book" | |
vector_store_path = os.path.join(local_repo_path, f"{store_name}.pkl") | |
# Check if vector store already exists and force_reload is False | |
if not force_reload and os.path.exists(vector_store_path): | |
with open(vector_store_path, "rb") as f: | |
VectorStore = pickle.load(f) | |
#st.text(f"Loaded existing vector store from {vector_store_path}") | |
else: | |
# Load and process the PDF, then create the vector store | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=100, length_function=len) | |
text = load_pdf_text(file_path) | |
chunks = text_splitter.split_text(text=text) | |
embeddings = OpenAIEmbeddings() | |
VectorStore = FAISS.from_texts(chunks, embedding=embeddings) | |
# Serialize the vector store | |
with open(vector_store_path, "wb") as f: | |
pickle.dump(VectorStore, f) | |
#st.text(f"Created and saved vector store at {vector_store_path}") | |
# Change working directory for Git operations | |
original_dir = os.getcwd() | |
os.chdir(local_repo_path) | |
try: | |
# Check current working directory and list files for debugging | |
#st.text(f"Current working directory: {os.getcwd()}") | |
#st.text(f"Files in current directory: {os.listdir()}") | |
# Adjusted file path for Git command | |
repo.git_add(f"{store_name}.pkl") # Use just the file name | |
repo.git_commit(f"Update vector store: {store_name}") | |
repo.git_push() | |
except Exception as e: | |
st.error(f"Error during Git operations: {e}") | |
finally: | |
# Change back to the original directory | |
os.chdir(original_dir) | |
return VectorStore | |
# Utility function to load text from a PDF | |
def load_pdf_text(file_path): | |
pdf_reader = PdfReader(file_path) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() or "" # Add fallback for pages where text extraction fails | |
return text | |
def load_chatbot(): | |
#return load_qa_chain(llm=OpenAI(), chain_type="stuff") | |
return load_qa_chain(llm=OpenAI(model_name="gpt-3.5-turbo-instruct"), chain_type="stuff") | |
def display_chat_history(chat_history): | |
for chat in chat_history: | |
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf" | |
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) | |
def handle_no_answer(response): | |
no_answer_phrases = [ | |
"ich weiß es nicht", | |
"ich weiß nicht", | |
"ich bin mir nicht sicher", | |
"es wird nicht erwähnt", | |
"Leider kann ich diese Frage nicht beantworten", | |
"kann ich diese Frage nicht beantworten", | |
"ich kann diese Frage nicht beantworten", | |
"ich kann diese Frage leider nicht beantworten", | |
"keine information", | |
"das ist unklar", | |
"da habe ich keine antwort", | |
"das kann ich nicht beantworten", | |
"i don't know", | |
"i am not sure", | |
"it is not mentioned", | |
"no information", | |
"that is unclear", | |
"i have no answer", | |
"i cannot answer that", | |
"unable to provide an answer", | |
"not enough context", | |
"Sorry, I do not have enough information", | |
"I do not have enough information", | |
"I don't have enough information", | |
"Sorry, I don't have enough context to answer that question.", | |
"I don't have enough context to answer that question.", | |
"to answer that question.", | |
"Sorry", | |
"I'm sorry", | |
"I don't understand the question", | |
"I don't understand" | |
] | |
alternative_responses = [ | |
"Hmm, das ist eine knifflige Frage. Lass uns das gemeinsam erkunden. Kannst du mehr Details geben?", | |
"Interessante Frage! Ich bin mir nicht sicher, aber wir können es herausfinden. Hast du weitere Informationen?", | |
"Das ist eine gute Frage. Ich habe momentan keine Antwort darauf, aber vielleicht kannst du sie anders formulieren?", | |
"Da bin ich überfragt. Kannst du die Frage anders stellen oder mir mehr Kontext geben?", | |
"Ich stehe hier etwas auf dem Schlauch. Gibt es noch andere Aspekte der Frage, die wir betrachten könnten?", | |
# Add more alternative responses as needed | |
] | |
# Check if response matches any phrase in no_answer_phrases | |
if any(phrase in response.lower() for phrase in no_answer_phrases): | |
return random.choice(alternative_responses) # Randomly select a response | |
return response | |
def ask_bot(query): | |
# Definiere den standardmäßigen Prompt | |
standard_prompt = "Antworte immer in der Sprache in der der User schreibt. Formuliere immer ganze freundliche ganze Sätze und biete wenn möglich auch mehr Informationen (aber nicht mehr als 1 Satz mehr). Wenn der User sehr vage schreibt frage nach. Wenn du zu einer bestimmten Frage Daten aus mehreren Jahren hast, nenne das aktuellste und ein weiters. " | |
# Kombiniere den standardmäßigen Prompt mit der Benutzeranfrage | |
full_query = standard_prompt + query | |
return full_query | |
def save_conversation(chat_histories, session_id): | |
base_path = "Chat_Store/conversation_logs" | |
if not os.path.exists(base_path): | |
os.makedirs(base_path) | |
filename = f"{base_path}/{session_id}.json" | |
# Check if the log file already exists | |
existing_data = {"page1": [], "page2": [], "page3": []} | |
if os.path.exists(filename): | |
with open(filename, 'r', encoding='utf-8') as file: | |
existing_data = json.load(file) | |
# Append the new chat history to the existing data for each page | |
for page_number, chat_history in enumerate(chat_histories, start=1): | |
existing_data[f"page{page_number}"] += chat_history | |
with open(filename, 'w', encoding='utf-8') as file: | |
json.dump(existing_data, file, indent=4, ensure_ascii=False) | |
# Git operations | |
try: | |
# Change directory to Chat_Store for Git operations | |
original_dir = os.getcwd() | |
os.chdir('Chat_Store') | |
# Correct file path relative to the Git repository's root | |
git_file_path = f"conversation_logs/{session_id}.json" | |
repo2.git_add(git_file_path) | |
repo2.git_commit(f"Add/update conversation log for session {session_id}") | |
repo2.git_push() | |
# Change back to the original directory | |
os.chdir(original_dir) | |
except Exception as e: | |
st.error(f"Error during Git operations: {e}") | |
def display_session_id(): | |
session_id = st.session_state['session_id'] | |
st.sidebar.markdown(f"**Ihre Session ID:** `{session_id}`") | |
st.sidebar.markdown("Verwenden Sie diese ID als Referenz bei Mitteilungen oder Rückmeldungen.") | |
def page1(): | |
try: | |
hide_streamlit_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
# Create columns for layout | |
col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking | |
with col1: | |
st.title("Alles zur aktuellen Krankenhausreform!") | |
with col2: | |
# Load and display the image in the right column, which will be the top-right corner of the page | |
image = Image.open('BinDoc Logo (Quadratisch).png') | |
st.image(image, use_column_width='always') | |
if not os.path.exists(pdf_path): | |
st.error("File not found. Please check the file path.") | |
return | |
VectorStore = load_vector_store(pdf_path, "KH_Reform_2301", force_reload=False) | |
display_chat_history(st.session_state['chat_history_page1']) | |
st.write("<!-- Start Spacer -->", unsafe_allow_html=True) | |
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True) | |
st.write("<!-- End Spacer -->", unsafe_allow_html=True) | |
new_messages_placeholder = st.empty() | |
query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:") | |
add_vertical_space(2) # Adjust as per the desired spacing | |
# Create two columns for the buttons | |
col1, col2 = st.columns(2) | |
with col1: | |
if st.button("Wie viele Ärzte benötigt eine Klinik in der Leistungsgruppe Stammzell-transplantation?"): | |
query = "Wie viele Ärzte benötigt eine Klinik in der Leistungsgruppe Stammzell-transplantation?" | |
if st.button("Wie viele Leistungsgruppen soll es durch die neue KH Reform geben?"): | |
query = ("Wie viele Leistungsgruppen soll es durch die neue KH Reform geben?") | |
if st.button("Was sind die hauptsächlichen Änderungsvorhaben der Krankenhausreform?"): | |
query = "Was sind die hauptsächlichen Änderungsvorhaben der Krankenhausreform?" | |
with col2: | |
if st.button("Welche technischen Gerätevorgaben und Personalvorgaben muss die LG Allgemeine Chirugie erfüllen?"): | |
query = "Welche technischen Gerätevorgaben und Personalvorgaben muss die LG Allgemeine Chirugie erfüllen?" | |
if st.button("Was soll die Reform der Notfallversorgung beinhalten?"): | |
query = "Was soll die Reform der Notfallversorgung beinhalten?" | |
if st.button("Was bedeutet die Vorhaltefinanzierung?"): | |
query = "Was bedeutet die Vorhaltefinanzierung?" | |
if query: | |
full_query = ask_bot(query) | |
st.session_state['chat_history_page1'].append(("User", query, "new")) | |
# Start timing | |
start_time = time.time() | |
# Create a placeholder for the response time | |
response_time_placeholder = st.empty() | |
# Include the spinner around all processing and display operations | |
with st.spinner('Eve denkt über Ihre Frage nach...'): | |
chain = load_chatbot() | |
docs = VectorStore.similarity_search(query=query, k=5) | |
with get_openai_callback() as cb: | |
response = chain.run(input_documents=docs, question=full_query) | |
response = handle_no_answer(response) | |
# Stop timing | |
end_time = time.time() | |
# Calculate duration | |
duration = end_time - start_time | |
st.session_state['chat_history_page1'].append(("Eve", response, "new")) | |
# Combine chat histories from all pages | |
all_chat_histories = [ | |
st.session_state['chat_history_page1'], | |
st.session_state['chat_history_page2'], | |
st.session_state['chat_history_page3'] | |
] | |
# Save the combined chat histories | |
save_conversation(all_chat_histories, st.session_state['session_id']) | |
# Display new messages at the bottom | |
new_messages = st.session_state['chat_history_page1'][-2:] | |
for chat in new_messages: | |
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf" | |
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) | |
# Update the response time placeholder after the messages are displayed | |
response_time_placeholder.text(f"Response time: {duration:.2f} seconds") | |
# Clear the input field after the query is made | |
query = "" | |
# Mark all messages as old after displaying | |
st.session_state['chat_history_page1'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page1']] | |
except Exception as e: | |
st.error(f"Upsi, an unexpected error occurred: {e}") | |
# Optionally log the exception details to a file or error tracking service | |
def page2(): | |
try: | |
hide_streamlit_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
# Create columns for layout | |
col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking | |
with col1: | |
st.title("Die wichtigsten 100 Kennzahlen und KPIs!") | |
with col2: | |
# Load and display the image in the right column, which will be the top-right corner of the page | |
image = Image.open('BinDoc Logo (Quadratisch).png') | |
st.image(image, use_column_width='always') | |
if not os.path.exists(pdf_path2): | |
st.error("File not found. Please check the file path.") | |
return | |
VectorStore = load_vector_store(pdf_path2, "Buch_2301", force_reload=False) | |
display_chat_history(st.session_state['chat_history_page2']) | |
st.write("<!-- Start Spacer -->", unsafe_allow_html=True) | |
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True) | |
st.write("<!-- End Spacer -->", unsafe_allow_html=True) | |
new_messages_placeholder = st.empty() | |
query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:") | |
add_vertical_space(2) # Adjust as per the desired spacing | |
# Create two columns for the buttons | |
col1, col2 = st.columns(2) | |
with col1: | |
if st.button("Erstelle mir eine Liste mit 3 wichtigen Personalkennzahlen im Krankenhaus."): | |
query = "Erstelle mir eine Liste mit 3 wichtigen Personalkennzahlen im Krankenhaus." | |
if st.button("Wie ist die durchschnittliche Bettenauslastung eines Krankenhauses im Jahr 2020?"): | |
query = ("Wie ist die durchschnittliche Bettenauslastung eines Krankenhauses im Jahr 2020?") | |
if st.button("Welches sind die Top 1-5 DRGs, die von den Krankenhäusern 2020 abgerechnet wurden?"): | |
query = "Welches sind die Top 1-5 DRGs, die von den Krankenhäusern 2020 abgerechnet wurden? " | |
with col2: | |
if st.button("Wie viel Casemixpunkte werden im Median von einer ärztlichen VK ärztlicher Dienst 2020 erbracht?"): | |
query = "Wie viel Casemixpunkte werden im Median von einer ärztlichen VK ärztlicher Dienst 2020 erbracht?" | |
if st.button("Bitte erstelle mir einer Übersicht des BBFW, Planbetten und CM-relevanten Erlöse eines KH der Grund- und Regelversorgung."): | |
query = "Bitte erstelle mir einer Übersicht des BBFW, Planbetten und CM-relevanten Erlöse eines KH der Grund- und Regelversorgung." | |
if st.button("Wie viele Patienten eines Grund- und Regelversorgers kommen aus einem 10, 20, 30, 40 Minuten Radius?"): | |
query = "Wie viele Patienten eines Grund- und Regelversorgers kommen aus einem 10, 20, 30, 40 Minuten Radius?" | |
if query: | |
full_query = ask_bot(query) | |
st.session_state['chat_history_page2'].append(("User", query, "new")) | |
# Start timing | |
start_time = time.time() | |
# Create a placeholder for the response time | |
response_time_placeholder = st.empty() | |
with st.spinner('Eve denkt über Ihre Frage nach...'): | |
chain = load_chatbot() | |
docs = VectorStore.similarity_search(query=query, k=5) | |
with get_openai_callback() as cb: | |
response = chain.run(input_documents=docs, question=full_query) | |
response = handle_no_answer(response) # Process the response through the new function | |
# Stop timing | |
end_time = time.time() | |
# Calculate duration | |
duration = end_time - start_time | |
st.session_state['chat_history_page2'].append(("Eve", response, "new")) | |
# Combine chat histories from all pages | |
all_chat_histories = [ | |
st.session_state['chat_history_page1'], | |
st.session_state['chat_history_page2'], | |
st.session_state['chat_history_page3'] | |
] | |
# Save the combined chat histories | |
save_conversation(all_chat_histories, st.session_state['session_id']) | |
# Display new messages at the bottom | |
new_messages = st.session_state['chat_history_page2'][-2:] | |
for chat in new_messages: | |
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf" | |
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) | |
# Update the response time placeholder after the messages are displayed | |
response_time_placeholder.text(f"Response time: {duration:.2f} seconds") | |
# Clear the input field after the query is made | |
query = "" | |
# Mark all messages as old after displaying | |
st.session_state['chat_history_page2'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page2']] | |
except Exception as e: | |
st.error(f"Upsi, an unexpected error occurred: {e}") | |
# Optionally log the exception details to a file or error tracking service | |
# Correcting the indentation error and completing the CromA database integration in page3() | |
def page3(): | |
try: | |
hide_streamlit_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
# Create columns for layout | |
col1, col2 = st.columns([3, 1]) # Adjust the ratio to your liking | |
with col1: | |
st.title("Kosten- und Strukturdaten der Krankenhäuser") | |
with col2: | |
# Load and display the image in the right column, which will be the top-right corner of the page | |
image = Image.open('BinDoc Logo (Quadratisch).png') | |
st.image(image, use_column_width='always') | |
if not os.path.exists(pdf_path3): | |
st.error("File not found. Please check the file path.") | |
return | |
# Initialize CromA client and collection | |
chroma_client = chromadb.Client() | |
collection = chroma_client.create_collection(name="Kosten_Strukturdaten") | |
display_chat_history(st.session_state['chat_history_page3']) | |
st.write("<!-- Start Spacer -->", unsafe_allow_html=True) | |
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True) | |
st.write("<!-- End Spacer -->", unsafe_allow_html=True) | |
new_messages_placeholder = st.empty() | |
query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:") | |
add_vertical_space(2) # Adjust as per the desired spacing | |
# Create two columns for the buttons | |
col1, col2 = st.columns(2) | |
with col1: | |
if st.button("Test1"): | |
query = "Test1" | |
with col2: | |
if st.button("Test2"): | |
query = "Test2" | |
# Handling query input | |
if query: | |
full_query = ask_bot(query) | |
st.session_state['chat_history_page3'].append(("User", query, "new")) | |
# Start timing for response | |
start_time = time.time() | |
# Querying the CromA collection | |
results = collection.query( | |
query_texts=[full_query], | |
n_results=5 # Adjust the number of results as needed | |
) | |
# Calculate the response duration | |
end_time = time.time() | |
duration = end_time - start_time | |
# Process and display response from CromA results | |
if results: | |
# TODO: Adjust the following logic based on CromA's actual result structure | |
response = f"Top result: {results[0]['text']}" # Example response using the first result | |
else: | |
response = "No results found for your query." | |
st.session_state['chat_history_page3'].append(("Eve", response, "new")) | |
# Combine chat histories from all pages | |
all_chat_histories = [ | |
st.session_state['chat_history_page1'], | |
st.session_state['chat_history_page2'], | |
st.session_state['chat_history_page3'] | |
] | |
# Save the combined chat histories | |
save_conversation(all_chat_histories, st.session_state['session_id']) | |
# Display new messages at the bottom | |
new_messages = st.session_state['chat_history_page3'][-2:] | |
for chat in new_messages: | |
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf" | |
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) | |
# Update the response time placeholder after the messages are displayed | |
response_time_placeholder.text(f"Response time: {duration:.2f} seconds") | |
# Clear the input field after the query is made | |
query = "" | |
# Mark all messages as old after displaying | |
st.session_state['chat_history_page3'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page3']] | |
except Exception as e: | |
st.error(f"Upsi, an unexpected error occurred: {e}") | |
# Optionally log the exception details to a file or error tracking service | |
def page4(): | |
try: | |
st.header(":mailbox: Kontakt & Feedback!") | |
st.markdown("Ihre Session-ID finden Sie auf der linken Seite!") | |
contact_form = """ | |
<form action="https://formsubmit.co/anne.demond@googlemail.com" method="POST"> | |
<input type="hidden" name="_captcha" value="false"> | |
<input type="text" name="Session-ID" placeholder="Your Session-ID goes here" required> | |
<input type="email" name="email" placeholder="Your email" required> | |
<textarea name="message" placeholder="Your message here"></textarea> | |
<form action="https://formsubmit.co/your-random-string" method="POST" /> | |
<button type="submit">Send</button> | |
</form> | |
""" | |
st.markdown(contact_form, unsafe_allow_html=True) | |
# Use Local CSS File | |
def local_css(file_name): | |
with open(file_name) as f: | |
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True) | |
local_css("style.css") | |
except Exception as e: | |
st.error(f"Upsi, an unexpected error occurred: {e}") | |
# Optionally log the exception details to a file or error tracking service | |
def display_session_id(): | |
session_id = st.session_state['session_id'] | |
st.sidebar.markdown(f"**Your Session ID:** `{session_id}`") | |
st.sidebar.markdown("Verwenden Sie diese ID als Referenz bei Mitteilungen oder Rückmeldungen.") | |
# Main function | |
def main(): | |
# Sidebar content | |
with st.sidebar: | |
st.title('BinDoc GmbH') | |
st.markdown("Tauchen Sie ein in eine revolutionäre Erfahrung mit BinDocs Chat-App - angetrieben von fortschrittlichster KI-Technologie.") | |
add_vertical_space(1) | |
page = st.sidebar.selectbox("Wählen Sie eine Seite aus:", ["Krankenhausreform!", "Kennzahlen und KPIs!", "Kosten- und Strukturdaten", "Kontakt & Feedback!"]) | |
add_vertical_space(4) | |
display_session_id() # Display the session ID in the sidebar | |
st.write('Made with ❤️ by BinDoc GmbH') | |
# Main area content based on page selection | |
if page == "Krankenhausreform!": | |
page1() | |
elif page == "Kennzahlen und KPIs!": | |
page2() | |
elif page == "Kosten- und Strukturdaten": | |
page3() | |
elif page == "Kontakt & Feedback!": | |
page4() | |
if __name__ == "__main__": | |
main() |