Spaces:
Sleeping
Sleeping
from lida import Manager, TextGenerationConfig , llm | |
from dotenv import load_dotenv | |
import os | |
import openai | |
import base64 | |
from PIL import Image | |
from io import BytesIO | |
print("Import Successful!") | |
load_dotenv() | |
def base64_to_image(base64_string): | |
# Decode the base64 string | |
byte_data = base64.b64decode(base64_string) | |
# Use BytesIO to convert the byte data to image | |
return Image.open(BytesIO(byte_data)) | |
def save_image(base64_str, save_path): | |
img = base64_to_image(base64_str) | |
img.save(save_path) | |
print(f"Image saved at {save_path}") | |
openai.api_key = os.getenv('OPENAI_API_KEY') | |
#text_gen = llm("openai") | |
#text_gen = llm(provider="hf", model="togethercomputer/Llama-2-7B-32K-Instruct", device_map="cpu") | |
lida = Manager(text_gen = llm("openai")) | |
print("Model Loaded Successfully!") | |
textgen_config = TextGenerationConfig(n=1, temperature=0.5, model="gpt-3.5-turbo-0301", use_cache=True) | |
summary = lida.summarize("2019.csv", summary_method="default", textgen_config=textgen_config) | |
print(summary) | |
goals = lida.goals(summary, n=2, textgen_config=textgen_config) | |
for goal in goals: | |
print(goal) | |
i = 0 | |
library = "seaborn" | |
textgen_config = TextGenerationConfig(n=1, temperature=0.2, use_cache=True) | |
charts = lida.visualize(summary=summary, goal=goals[i], textgen_config=textgen_config, library=library) | |
image_base64 = charts[0].raster | |
save_image(image_base64, "filename.png") | |