|
import streamlit as st |
|
from PIL import Image |
|
import time |
|
import streamlit_analytics |
|
from dotenv import load_dotenv |
|
import pickle |
|
from huggingface_hub import Repository |
|
from PyPDF2 import PdfReader |
|
from streamlit_extras.add_vertical_space import add_vertical_space |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.llms import OpenAI |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.callbacks import get_openai_callback |
|
import os |
|
|
|
|
|
st.set_option('theme', 'light') |
|
|
|
|
|
st.set_page_config(initial_sidebar_state="collapsed") |
|
|
|
|
|
repo = Repository( |
|
local_dir="Private_Book", |
|
repo_type="dataset", |
|
clone_from="Anne31415/Private_Book", |
|
token=os.environ["HUB_TOKEN"] |
|
) |
|
repo.git_pull() |
|
|
|
|
|
pdf_path = "Private_Book/KOMBI_all2.pdf" |
|
|
|
with st.sidebar: |
|
st.title('BinDoc GmbH') |
|
st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.") |
|
|
|
add_vertical_space(1) |
|
|
|
st.markdown(""" |
|
Hello! I’m here to assist you with:<br><br> |
|
📘 **Glossary Inquiries:**<br> |
|
I can clarify terms like "DiGA", "AOP", or "BfArM", providing clear and concise explanations to help you understand our content better.<br><br> |
|
🆘 **Help Page Navigation:**<br> |
|
Ask me if you forgot your password or want to know more about topics related to the platform.<br><br> |
|
📰 **Latest Whitepapers Insights:**<br> |
|
Curious about our recent publications? Feel free to ask about our latest whitepapers!<br><br> |
|
""", unsafe_allow_html=True) |
|
|
|
add_vertical_space(1) |
|
|
|
st.write('Made with ❤️ by BinDoc GmbH') |
|
|
|
api_key = os.getenv("OPENAI_API_KEY") |
|
|
|
|
|
|
|
@st.cache_data(persist="disk") |
|
|
|
|
|
def load_vector_store(file_path, store_name, force_reload=False): |
|
|
|
if force_reload or not os.path.exists(f"{store_name}.pkl"): |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=1000, |
|
chunk_overlap=200, |
|
length_function=len |
|
) |
|
|
|
text = load_pdf_text(file_path) |
|
chunks = text_splitter.split_text(text=text) |
|
|
|
embeddings = OpenAIEmbeddings() |
|
VectorStore = FAISS.from_texts(chunks, embedding=embeddings) |
|
with open(f"{store_name}.pkl", "wb") as f: |
|
pickle.dump(VectorStore, f) |
|
else: |
|
with open(f"{store_name}.pkl", "rb") as f: |
|
VectorStore = pickle.load(f) |
|
|
|
return VectorStore |
|
|
|
|
|
def load_pdf_text(file_path): |
|
pdf_reader = PdfReader(file_path) |
|
text = "" |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() or "" |
|
return text |
|
|
|
def load_chatbot(): |
|
return load_qa_chain(llm=OpenAI(), chain_type="stuff") |
|
|
|
def main(): |
|
try: |
|
hide_streamlit_style = """ |
|
<style> |
|
#MainMenu {visibility: hidden;} |
|
footer {visibility: hidden;} |
|
</style> |
|
""" |
|
st.markdown(hide_streamlit_style, unsafe_allow_html=True) |
|
|
|
|
|
col1, col2 = st.columns([3, 1]) |
|
|
|
with col1: |
|
st.title("Welcome to BinDocs ChatBot!") |
|
|
|
with col2: |
|
|
|
image = Image.open('BinDoc Logo (Quadratisch).png') |
|
st.image(image, use_column_width='always') |
|
|
|
|
|
|
|
|
|
|
|
with streamlit_analytics.track(): |
|
if not os.path.exists(pdf_path): |
|
st.error("File not found. Please check the file path.") |
|
return |
|
|
|
VectorStore = load_vector_store(pdf_path, "my_vector_store", force_reload=False) |
|
|
|
|
|
if "chat_history" not in st.session_state: |
|
st.session_state['chat_history'] = [] |
|
|
|
display_chat_history(st.session_state['chat_history']) |
|
|
|
st.write("<!-- Start Spacer -->", unsafe_allow_html=True) |
|
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True) |
|
st.write("<!-- End Spacer -->", unsafe_allow_html=True) |
|
|
|
new_messages_placeholder = st.empty() |
|
|
|
query = st.text_input("Ask questions about your PDF file (in any preferred language):") |
|
|
|
add_vertical_space(2) |
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
if st.button("Was kann ich mit dem Prognose-Analyse-Tool machen?"): |
|
query = "Was kann ich mit dem Prognose-Analyse-Tool machen?" |
|
if st.button("Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"): |
|
query = "Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?" |
|
if st.button("Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"): |
|
query = "Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?" |
|
|
|
|
|
with col2: |
|
if st.button("Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat."): |
|
query = "Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat." |
|
if st.button("Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?"): |
|
query = "Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?" |
|
if st.button("Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?"): |
|
query = "Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?" |
|
|
|
|
|
if query: |
|
st.session_state['chat_history'].append(("User", query, "new")) |
|
|
|
|
|
start_time = time.time() |
|
|
|
with st.spinner('Bot is thinking...'): |
|
|
|
chain = load_chatbot() |
|
docs = VectorStore.similarity_search(query=query, k=3) |
|
with get_openai_callback() as cb: |
|
response = chain.run(input_documents=docs, question=query) |
|
|
|
|
|
|
|
end_time = time.time() |
|
|
|
|
|
duration = end_time - start_time |
|
|
|
|
|
st.text(f"Response time: {duration:.2f} seconds") |
|
|
|
st.session_state['chat_history'].append(("Bot", response, "new")) |
|
|
|
|
|
|
|
new_messages = st.session_state['chat_history'][-2:] |
|
for chat in new_messages: |
|
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf" |
|
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) |
|
|
|
|
|
|
|
query = "" |
|
|
|
|
|
st.session_state['chat_history'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history']] |
|
|
|
except Exception as e: |
|
st.error(f"Upsi, an unexpected error occurred: {e}") |
|
|
|
|
|
|
|
def display_chat_history(chat_history): |
|
for chat in chat_history: |
|
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf" |
|
st.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |