Spaces:
Runtime error
Runtime error
from .utils import load_model,load_processor,normalize_box,compare_boxes,adjacent | |
from .annotate_image import get_flattened_output,annotate_image | |
from PIL import Image,ImageDraw, ImageFont | |
import logging | |
import torch | |
import json | |
logger = logging.getLogger(__name__) | |
class ModelHandler(object): | |
""" | |
A base Model handler implementation. | |
""" | |
def __init__(self): | |
self.model = None | |
self.model_dir = None | |
self.device = 'cpu' | |
self.error = None | |
# self._context = None | |
# self._batch_size = 0 | |
self.initialized = False | |
self._raw_input_data = None | |
self._processed_data = None | |
self._images_size = None | |
def initialize(self, context): | |
""" | |
Initialize model. This will be called during model loading time | |
:param context: Initial context contains model server system properties. | |
:return: | |
""" | |
logger.info("Loading transformer model") | |
self._context = context | |
properties = self._context | |
# self._batch_size = properties["batch_size"] or 1 | |
self.model_dir = properties.get("model_dir") | |
self.model = self.load(self.model_dir) | |
self.initialized = True | |
def preprocess(self, batch): | |
""" | |
Transform raw input into model input data. | |
:param batch: list of raw requests, should match batch size | |
:return: list of preprocessed model input data | |
""" | |
# Take the input data and pre-process it make it inference ready | |
# assert self._batch_size == len(batch), "Invalid input batch size: {}".format(len(batch)) | |
inference_dict = batch | |
self._raw_input_data = inference_dict | |
processor = load_processor() | |
images = [Image.open(path).convert("RGB") | |
for path in inference_dict['image_path']] | |
self._images_size = [img.size for img in images] | |
words = inference_dict['words'] | |
boxes = [[normalize_box(box, images[i].size[0], images[i].size[1]) | |
for box in doc] for i, doc in enumerate(inference_dict['bboxes'])] | |
encoded_inputs = processor( | |
images, words, boxes=boxes, return_tensors="pt", padding="max_length", truncation=True) | |
self._processed_data = encoded_inputs | |
return encoded_inputs | |
def load(self, model_dir): | |
"""The load handler is responsible for loading the hunggingface transformer model. | |
Returns: | |
hf_pipeline (Pipeline): A Hugging Face Transformer pipeline. | |
""" | |
# TODO model dir should be microsoft/layoutlmv2-base-uncased | |
model = load_model(model_dir) | |
return model | |
def inference(self, model_input): | |
""" | |
Internal inference methods | |
:param model_input: transformed model input data | |
:return: list of inference output in NDArray | |
""" | |
# TODO load the model state_dict before running the inference | |
# Do some inference call to engine here and return output | |
with torch.no_grad(): | |
inference_outputs = self.model(**model_input) | |
predictions = inference_outputs.logits.argmax(-1).tolist() | |
results = [] | |
for i in range(len(predictions)): | |
tmp = dict() | |
tmp[f'output_{i}'] = predictions[i] | |
results.append(tmp) | |
return [results] | |
def postprocess(self, inference_output): | |
docs = [] | |
k = 0 | |
for page, doc_words in enumerate(self._raw_input_data['words']): | |
doc_list = [] | |
width, height = self._images_size[page] | |
for i, doc_word in enumerate(doc_words, start=0): | |
word_tagging = None | |
word_labels = [] | |
word = dict() | |
word['id'] = k | |
k += 1 | |
word['text'] = doc_word | |
word['pageNum'] = page + 1 | |
word['box'] = self._raw_input_data['bboxes'][page][i] | |
_normalized_box = normalize_box( | |
self._raw_input_data['bboxes'][page][i], width, height) | |
for j, box in enumerate(self._processed_data['bbox'].tolist()[page]): | |
if compare_boxes(box, _normalized_box): | |
if self.model.config.id2label[inference_output[0][page][f'output_{page}'][j]] != 'O': | |
word_labels.append( | |
self.model.config.id2label[inference_output[0][page][f'output_{page}'][j]][2:]) | |
else: | |
word_labels.append('other') | |
if word_labels != []: | |
word_tagging = word_labels[0] if word_labels[0] != 'other' else word_labels[-1] | |
else: | |
word_tagging = 'other' | |
word['label'] = word_tagging | |
word['pageSize'] = {'width': width, 'height': height} | |
if word['label'] != 'other': | |
doc_list.append(word) | |
spans = [] | |
def adjacents(entity): return [ | |
adj for adj in doc_list if adjacent(entity, adj)] | |
output_test_tmp = doc_list[:] | |
for entity in doc_list: | |
if adjacents(entity) == []: | |
spans.append([entity]) | |
output_test_tmp.remove(entity) | |
while output_test_tmp != []: | |
span = [output_test_tmp[0]] | |
output_test_tmp = output_test_tmp[1:] | |
while output_test_tmp != [] and adjacent(span[-1], output_test_tmp[0]): | |
span.append(output_test_tmp[0]) | |
output_test_tmp.remove(output_test_tmp[0]) | |
spans.append(span) | |
output_spans = [] | |
for span in spans: | |
if len(span) == 1: | |
output_span = {"text": span[0]['text'], | |
"label": span[0]['label'], | |
"words": [{ | |
'id': span[0]['id'], | |
'box': span[0]['box'], | |
'text': span[0]['text'] | |
}], | |
} | |
else: | |
output_span = {"text": ' '.join([entity['text'] for entity in span]), | |
"label": span[0]['label'], | |
"words": [{ | |
'id': entity['id'], | |
'box': entity['box'], | |
'text': entity['text'] | |
} for entity in span] | |
} | |
output_spans.append(output_span) | |
docs.append({f'output': output_spans}) | |
return [json.dumps(docs, ensure_ascii=False)] | |
def handle(self, data, context): | |
""" | |
Call preprocess, inference and post-process functions | |
:param data: input data | |
:param context: mms context | |
""" | |
model_input = self.preprocess(data) | |
model_out = self.inference(model_input) | |
inference_out = self.postprocess(model_out)[0] | |
with open('LayoutlMV3InferenceOutput.json', 'w') as inf_out: | |
inf_out.write(inference_out) | |
inference_out_list = json.loads(inference_out) | |
flattened_output_list = get_flattened_output(inference_out_list) | |
for i, flattened_output in enumerate(flattened_output_list): | |
annotate_image(data['image_path'][i], flattened_output) | |
_service = ModelHandler() | |
def handle(data, context): | |
if not _service.initialized: | |
_service.initialize(context) | |
if data is None: | |
return None | |
return _service.handle(data, context) | |