AnnasBlackHat commited on
Commit
67ef6b6
1 Parent(s): 71c9c71

fix sock price order

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -80,13 +80,13 @@ def format_df(data):
80
  if data == '' : return tables
81
 
82
  df = pd.json_normalize(data)
83
- # Check if column exists
84
  for col in ["price", "created_at"]:
85
  if col not in df.columns:
86
  # If not, add the column and fill with NaN or other default
87
  df[col] = 0
88
 
89
- # Check if column exists
90
  for col in ["stock_out_source", "stock_out_id"]:
91
  if col not in df.columns:
92
  # If not, add the column and fill with NaN or other default
@@ -109,9 +109,11 @@ def format_df(data):
109
  grouped_data = df.groupby("stock_price_id").agg(
110
  {"product_name": "first", "outlet_name": "first", "price": "first",
111
  "stock_in": "first", "stock_out_total": "first", "stock_in_source": "first",
112
- "stock_in_id": "first", "stock in": "first", "date_in":"first"}
113
  ).reset_index()
114
 
 
 
115
  # Iterate through groups and display main and detail tables
116
  for index, row in grouped_data.iterrows():
117
  main_table = pd.DataFrame([row], columns=["stock in", "price", "stock_in"])
 
80
  if data == '' : return tables
81
 
82
  df = pd.json_normalize(data)
83
+ # Check if column exists (number)
84
  for col in ["price", "created_at"]:
85
  if col not in df.columns:
86
  # If not, add the column and fill with NaN or other default
87
  df[col] = 0
88
 
89
+ # Check if column exists (sting)
90
  for col in ["stock_out_source", "stock_out_id"]:
91
  if col not in df.columns:
92
  # If not, add the column and fill with NaN or other default
 
109
  grouped_data = df.groupby("stock_price_id").agg(
110
  {"product_name": "first", "outlet_name": "first", "price": "first",
111
  "stock_in": "first", "stock_out_total": "first", "stock_in_source": "first",
112
+ "stock_in_id": "first", "stock in": "first", "date_in":"first", "created_at_in": "first"}
113
  ).reset_index()
114
 
115
+ grouped_data = grouped_data.sort_values(by="created_at_in")
116
+
117
  # Iterate through groups and display main and detail tables
118
  for index, row in grouped_data.iterrows():
119
  main_table = pd.DataFrame([row], columns=["stock in", "price", "stock_in"])