Annas commited on
Commit
7f7b702
·
1 Parent(s): 4c44327
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +1 -0
  2. app.py +14 -0
  3. detection/.DS_Store +0 -0
  4. detection/LICENSE.md +674 -0
  5. detection/Pipfile +28 -0
  6. detection/Pipfile.lock +985 -0
  7. README.md → detection/README.md +4 -4
  8. detection/app.py +190 -0
  9. detection/cfg/.DS_Store +0 -0
  10. detection/cfg/baseline/r50-csp.yaml +49 -0
  11. detection/cfg/baseline/x50-csp.yaml +49 -0
  12. detection/cfg/baseline/yolor-csp-x.yaml +52 -0
  13. detection/cfg/baseline/yolor-csp.yaml +52 -0
  14. detection/cfg/baseline/yolor-d6.yaml +63 -0
  15. detection/cfg/baseline/yolor-e6.yaml +63 -0
  16. detection/cfg/baseline/yolor-p6.yaml +63 -0
  17. detection/cfg/baseline/yolor-w6.yaml +63 -0
  18. detection/cfg/baseline/yolov3-spp.yaml +51 -0
  19. detection/cfg/baseline/yolov3.yaml +51 -0
  20. detection/cfg/baseline/yolov4-csp.yaml +52 -0
  21. detection/cfg/deploy/yolov7-d6.yaml +202 -0
  22. detection/cfg/deploy/yolov7-e6.yaml +180 -0
  23. detection/cfg/deploy/yolov7-e6e.yaml +301 -0
  24. detection/cfg/deploy/yolov7-tiny-silu.yaml +112 -0
  25. detection/cfg/deploy/yolov7-tiny.yaml +112 -0
  26. detection/cfg/deploy/yolov7-w6.yaml +158 -0
  27. detection/cfg/deploy/yolov7.yaml +140 -0
  28. detection/cfg/deploy/yolov7x.yaml +156 -0
  29. detection/cfg/training/yolov7-d6.yaml +207 -0
  30. detection/cfg/training/yolov7-e6.yaml +185 -0
  31. detection/cfg/training/yolov7-e6e.yaml +306 -0
  32. detection/cfg/training/yolov7-tiny.yaml +112 -0
  33. detection/cfg/training/yolov7-w6.yaml +163 -0
  34. detection/cfg/training/yolov7.yaml +140 -0
  35. detection/cfg/training/yolov7x.yaml +156 -0
  36. detection/data/coco.yaml +23 -0
  37. detection/data/hyp.scratch.custom.yaml +31 -0
  38. detection/data/hyp.scratch.p5.yaml +31 -0
  39. detection/data/hyp.scratch.p6.yaml +31 -0
  40. detection/data/hyp.scratch.tiny.yaml +31 -0
  41. detection/detect.py +195 -0
  42. detection/export.py +205 -0
  43. detection/hubconf.py +97 -0
  44. detection/models/__init__.py +1 -0
  45. detection/models/common.py +2019 -0
  46. detection/models/experimental.py +262 -0
  47. detection/models/yolo.py +843 -0
  48. detection/requirements.txt +39 -0
  49. detection/scripts/get_coco.sh +22 -0
  50. detection/test.py +347 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ .DS_Store
app.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from detection import app
3
+
4
+ def recognize(img_arr):
5
+ return app.detect(img_arr)
6
+
7
+
8
+ demo = gr.Interface(fn=recognize,
9
+ inputs=[gr.Image(type="pil")],
10
+ outputs=[gr.Image(type='pil'), 'json'],
11
+ description='BIB Race Number Recognition')
12
+ demo.launch()
13
+
14
+
detection/.DS_Store ADDED
Binary file (6.15 kB). View file
 
detection/LICENSE.md ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
detection/Pipfile ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [[source]]
2
+ url = "https://pypi.org/simple"
3
+ verify_ssl = true
4
+ name = "pypi"
5
+
6
+ [packages]
7
+ matplotlib = ">=3.2.2"
8
+ numpy = ">=1.18.5"
9
+ opencv-python = ">=4.1.1"
10
+ pillow = ">=7.1.2"
11
+ pyyaml = ">=5.3.1"
12
+ requests = ">=2.23.0"
13
+ scipy = ">=1.4.1"
14
+ torch = "!=1.12.0,>=1.7.0"
15
+ torchvision = "!=0.13.0,>=0.8.1"
16
+ tqdm = ">=4.41.0"
17
+ protobuf = "<4.21.3"
18
+ tensorboard = ">=2.4.1"
19
+ pandas = ">=1.1.4"
20
+ seaborn = ">=0.11.0"
21
+ ipython = "*"
22
+ psutil = "*"
23
+ thop = "*"
24
+
25
+ [dev-packages]
26
+
27
+ [requires]
28
+ python_version = "3.8"
detection/Pipfile.lock ADDED
@@ -0,0 +1,985 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_meta": {
3
+ "hash": {
4
+ "sha256": "b6a2a48d059fdf02a0718549d2efc2db71db123b7c0ddfd73200667a5c8d31bc"
5
+ },
6
+ "pipfile-spec": 6,
7
+ "requires": {
8
+ "python_version": "3.8"
9
+ },
10
+ "sources": [
11
+ {
12
+ "name": "pypi",
13
+ "url": "https://pypi.org/simple",
14
+ "verify_ssl": true
15
+ }
16
+ ]
17
+ },
18
+ "default": {
19
+ "absl-py": {
20
+ "hashes": [
21
+ "sha256:5d15f85b8cc859c6245bc9886ba664460ed96a6fee895416caa37d669ee74a9a",
22
+ "sha256:f568809938c49abbda89826223c992b630afd23c638160ad7840cfe347710d97"
23
+ ],
24
+ "markers": "python_version >= '3.6'",
25
+ "version": "==1.2.0"
26
+ },
27
+ "appnope": {
28
+ "hashes": [
29
+ "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24",
30
+ "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"
31
+ ],
32
+ "markers": "sys_platform == 'darwin'",
33
+ "version": "==0.1.3"
34
+ },
35
+ "asttokens": {
36
+ "hashes": [
37
+ "sha256:c61e16246ecfb2cde2958406b4c8ebc043c9e6d73aaa83c941673b35e5d3a76b",
38
+ "sha256:e3305297c744ae53ffa032c45dc347286165e4ffce6875dc662b205db0623d86"
39
+ ],
40
+ "version": "==2.0.8"
41
+ },
42
+ "backcall": {
43
+ "hashes": [
44
+ "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e",
45
+ "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"
46
+ ],
47
+ "version": "==0.2.0"
48
+ },
49
+ "cachetools": {
50
+ "hashes": [
51
+ "sha256:6a94c6402995a99c3970cc7e4884bb60b4a8639938157eeed436098bf9831757",
52
+ "sha256:f9f17d2aec496a9aa6b76f53e3b614c965223c061982d434d160f930c698a9db"
53
+ ],
54
+ "markers": "python_version ~= '3.7'",
55
+ "version": "==5.2.0"
56
+ },
57
+ "certifi": {
58
+ "hashes": [
59
+ "sha256:84c85a9078b11105f04f3036a9482ae10e4621616db313fe045dd24743a0820d",
60
+ "sha256:fe86415d55e84719d75f8b69414f6438ac3547d2078ab91b67e779ef69378412"
61
+ ],
62
+ "markers": "python_version >= '3.6'",
63
+ "version": "==2022.6.15"
64
+ },
65
+ "charset-normalizer": {
66
+ "hashes": [
67
+ "sha256:5a3d016c7c547f69d6f81fb0db9449ce888b418b5b9952cc5e6e66843e9dd845",
68
+ "sha256:83e9a75d1911279afd89352c68b45348559d1fc0506b054b346651b5e7fee29f"
69
+ ],
70
+ "markers": "python_version >= '3.6'",
71
+ "version": "==2.1.1"
72
+ },
73
+ "cycler": {
74
+ "hashes": [
75
+ "sha256:3a27e95f763a428a739d2add979fa7494c912a32c17c4c38c4d5f082cad165a3",
76
+ "sha256:9c87405839a19696e837b3b818fed3f5f69f16f1eec1a1ad77e043dcea9c772f"
77
+ ],
78
+ "markers": "python_version >= '3.6'",
79
+ "version": "==0.11.0"
80
+ },
81
+ "decorator": {
82
+ "hashes": [
83
+ "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330",
84
+ "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"
85
+ ],
86
+ "markers": "python_version >= '3.5'",
87
+ "version": "==5.1.1"
88
+ },
89
+ "executing": {
90
+ "hashes": [
91
+ "sha256:9c745f80cda11eb22b62cbecf21156491a794eb56ab06f9d286a44e62822b24e",
92
+ "sha256:d1cd87c2e371e9966261410c5b3769d6df2f9e4a79a83eebd2662dd3388f9833"
93
+ ],
94
+ "version": "==0.10.0"
95
+ },
96
+ "fonttools": {
97
+ "hashes": [
98
+ "sha256:4606e1a88ee1f6699d182fea9511bd9a8a915d913eab4584e5226da1180fcce7",
99
+ "sha256:fff6b752e326c15756c819fe2fe7ceab69f96a1dbcfe8911d0941cdb49905007"
100
+ ],
101
+ "markers": "python_version >= '3.7'",
102
+ "version": "==4.37.1"
103
+ },
104
+ "google-auth": {
105
+ "hashes": [
106
+ "sha256:be62acaae38d0049c21ca90f27a23847245c9f161ff54ede13af2cb6afecbac9",
107
+ "sha256:ed65ecf9f681832298e29328e1ef0a3676e3732b2e56f41532d45f70a22de0fb"
108
+ ],
109
+ "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4, 3.5'",
110
+ "version": "==2.11.0"
111
+ },
112
+ "google-auth-oauthlib": {
113
+ "hashes": [
114
+ "sha256:3f2a6e802eebbb6fb736a370fbf3b055edcb6b52878bf2f26330b5e041316c73",
115
+ "sha256:a90a072f6993f2c327067bf65270046384cda5a8ecb20b94ea9a687f1f233a7a"
116
+ ],
117
+ "markers": "python_version >= '3.6'",
118
+ "version": "==0.4.6"
119
+ },
120
+ "grpcio": {
121
+ "hashes": [
122
+ "sha256:0425b5577be202d0a4024536bbccb1b052c47e0766096e6c3a5789ddfd5f400d",
123
+ "sha256:06c0739dff9e723bca28ec22301f3711d85c2e652d1c8ae938aa0f7ad632ef9a",
124
+ "sha256:08307dc5a6ac4da03146d6c00f62319e0665b01c6ffe805cfcaa955c17253f9c",
125
+ "sha256:090dfa19f41efcbe760ae59b34da4304d4be9a59960c9682b7eab7e0b6748a79",
126
+ "sha256:0a24b50810aae90c74bbd901c3f175b9645802d2fbf03eadaf418ddee4c26668",
127
+ "sha256:0cd44d78f302ff67f11a8c49b786c7ccbed2cfef6f4fd7bb0c3dc9255415f8f7",
128
+ "sha256:0d8a7f3eb6f290189f48223a5f4464c99619a9de34200ce80d5092fb268323d2",
129
+ "sha256:14d2bc74218986e5edf5527e870b0969d63601911994ebf0dce96288548cf0ef",
130
+ "sha256:1bb9afa85e797a646bfcd785309e869e80a375c959b11a17c9680abebacc0cb0",
131
+ "sha256:1ec63bbd09586e5cda1bdc832ae6975d2526d04433a764a1cc866caa399e50d4",
132
+ "sha256:2061dbe41e43b0a5e1fd423e8a7fb3a0cf11d69ce22d0fac21f1a8c704640b12",
133
+ "sha256:324e363bad4d89a8ec7124013371f268d43afd0ac0fdeec1b21c1a101eb7dafb",
134
+ "sha256:35dfd981b03a3ec842671d1694fe437ee9f7b9e6a02792157a2793b0eba4f478",
135
+ "sha256:43857d06b2473b640467467f8f553319b5e819e54be14c86324dad83a0547818",
136
+ "sha256:4706c78b0c183dca815bbb4ef3e8dd2136ccc8d1699f62c585e75e211ad388f6",
137
+ "sha256:4d9ad7122f60157454f74a850d1337ba135146cef6fb7956d78c7194d52db0fe",
138
+ "sha256:544da3458d1d249bb8aed5504adf3e194a931e212017934bf7bfa774dad37fb3",
139
+ "sha256:55782a31ec539f15b34ee56f19131fe1430f38a4be022eb30c85e0b0dcf57f11",
140
+ "sha256:55cd8b13c5ef22003889f599b8f2930836c6f71cd7cf3fc0196633813dc4f928",
141
+ "sha256:5dbba95fab9b35957b4977b8904fc1fa56b302f9051eff4d7716ebb0c087f801",
142
+ "sha256:5f57b9b61c22537623a5577bf5f2f970dc4e50fac5391090114c6eb3ab5a129f",
143
+ "sha256:64e097dd08bb408afeeaee9a56f75311c9ca5b27b8b0278279dc8eef85fa1051",
144
+ "sha256:664a270d3eac68183ad049665b0f4d0262ec387d5c08c0108dbcfe5b351a8b4d",
145
+ "sha256:668350ea02af018ca945bd629754d47126b366d981ab88e0369b53bc781ffb14",
146
+ "sha256:67cd275a651532d28620eef677b97164a5438c5afcfd44b15e8992afa9eb598c",
147
+ "sha256:68b5e47fcca8481f36ef444842801928e60e30a5b3852c9f4a95f2582d10dcb2",
148
+ "sha256:7191ffc8bcf8a630c547287ab103e1fdf72b2e0c119e634d8a36055c1d988ad0",
149
+ "sha256:815089435d0f113719eabf105832e4c4fa1726b39ae3fb2ca7861752b0f70570",
150
+ "sha256:8dbef03853a0dbe457417c5469cb0f9d5bf47401b49d50c7dad3c495663b699b",
151
+ "sha256:91cd292373e85a52c897fa5b4768c895e20a7dc3423449c64f0f96388dd1812e",
152
+ "sha256:9298d6f2a81f132f72a7e79cbc90a511fffacc75045c2b10050bb87b86c8353d",
153
+ "sha256:96cff5a2081db82fb710db6a19dd8f904bdebb927727aaf4d9c427984b79a4c1",
154
+ "sha256:9e63e0619a5627edb7a5eb3e9568b9f97e604856ba228cc1d8a9f83ce3d0466e",
155
+ "sha256:a278d02272214ec33f046864a24b5f5aab7f60f855de38c525e5b4ef61ec5b48",
156
+ "sha256:a6b2432ac2353c80a56d9015dfc5c4af60245c719628d4193ecd75ddf9cd248c",
157
+ "sha256:b821403907e865e8377af3eee62f0cb233ea2369ba0fcdce9505ca5bfaf4eeb3",
158
+ "sha256:b88bec3f94a16411a1e0336eb69f335f58229e45d4082b12d8e554cedea97586",
159
+ "sha256:bfdb8af4801d1c31a18d54b37f4e49bb268d1f485ecf47f70e78d56e04ff37a7",
160
+ "sha256:c79996ae64dc4d8730782dff0d1daacc8ce7d4c2ba9cef83b6f469f73c0655ce",
161
+ "sha256:cc34d182c4fd64b6ff8304a606b95e814e4f8ed4b245b6d6cc9607690e3ef201",
162
+ "sha256:d0d481ff55ea6cc49dab2c8276597bd4f1a84a8745fedb4bc23e12e9fb9d0e45",
163
+ "sha256:e9723784cf264697024778dcf4b7542c851fe14b14681d6268fb984a53f76df1",
164
+ "sha256:f4508e8abd67ebcccd0fbde6e2b1917ba5d153f3f20c1de385abd8722545e05f",
165
+ "sha256:f515782b168a4ec6ea241add845ccfebe187fc7b09adf892b3ad9e2592c60af1",
166
+ "sha256:f89de64d9eb3478b188859214752db50c91a749479011abd99e248550371375f",
167
+ "sha256:fcd5d932842df503eb0bf60f9cc35e6fe732b51f499e78b45234e0be41b0018d"
168
+ ],
169
+ "markers": "python_version >= '3.6'",
170
+ "version": "==1.47.0"
171
+ },
172
+ "idna": {
173
+ "hashes": [
174
+ "sha256:84d9dd047ffa80596e0f246e2eab0b391788b0503584e8945f2368256d2735ff",
175
+ "sha256:9d643ff0a55b762d5cdb124b8eaa99c66322e2157b69160bc32796e824360e6d"
176
+ ],
177
+ "markers": "python_version >= '3.5'",
178
+ "version": "==3.3"
179
+ },
180
+ "importlib-metadata": {
181
+ "hashes": [
182
+ "sha256:637245b8bab2b6502fcbc752cc4b7a6f6243bb02b31c5c26156ad103d3d45670",
183
+ "sha256:7401a975809ea1fdc658c3aa4f78cc2195a0e019c5cbc4c06122884e9ae80c23"
184
+ ],
185
+ "markers": "python_version < '3.10'",
186
+ "version": "==4.12.0"
187
+ },
188
+ "ipython": {
189
+ "hashes": [
190
+ "sha256:7ca74052a38fa25fe9bedf52da0be7d3fdd2fb027c3b778ea78dfe8c212937d1",
191
+ "sha256:f2db3a10254241d9b447232cec8b424847f338d9d36f9a577a6192c332a46abd"
192
+ ],
193
+ "index": "pypi",
194
+ "version": "==8.4.0"
195
+ },
196
+ "jedi": {
197
+ "hashes": [
198
+ "sha256:637c9635fcf47945ceb91cd7f320234a7be540ded6f3e99a50cb6febdfd1ba8d",
199
+ "sha256:74137626a64a99c8eb6ae5832d99b3bdd7d29a3850fe2aa80a4126b2a7d949ab"
200
+ ],
201
+ "markers": "python_version >= '3.6'",
202
+ "version": "==0.18.1"
203
+ },
204
+ "kiwisolver": {
205
+ "hashes": [
206
+ "sha256:02f79693ec433cb4b5f51694e8477ae83b3205768a6fb48ffba60549080e295b",
207
+ "sha256:03baab2d6b4a54ddbb43bba1a3a2d1627e82d205c5cf8f4c924dc49284b87166",
208
+ "sha256:1041feb4cda8708ce73bb4dcb9ce1ccf49d553bf87c3954bdfa46f0c3f77252c",
209
+ "sha256:10ee06759482c78bdb864f4109886dff7b8a56529bc1609d4f1112b93fe6423c",
210
+ "sha256:1d1573129aa0fd901076e2bfb4275a35f5b7aa60fbfb984499d661ec950320b0",
211
+ "sha256:283dffbf061a4ec60391d51e6155e372a1f7a4f5b15d59c8505339454f8989e4",
212
+ "sha256:28bc5b299f48150b5f822ce68624e445040595a4ac3d59251703779836eceff9",
213
+ "sha256:2a66fdfb34e05b705620dd567f5a03f239a088d5a3f321e7b6ac3239d22aa286",
214
+ "sha256:2e307eb9bd99801f82789b44bb45e9f541961831c7311521b13a6c85afc09767",
215
+ "sha256:2e407cb4bd5a13984a6c2c0fe1845e4e41e96f183e5e5cd4d77a857d9693494c",
216
+ "sha256:2f5e60fabb7343a836360c4f0919b8cd0d6dbf08ad2ca6b9cf90bf0c76a3c4f6",
217
+ "sha256:36dafec3d6d6088d34e2de6b85f9d8e2324eb734162fba59d2ba9ed7a2043d5b",
218
+ "sha256:3fe20f63c9ecee44560d0e7f116b3a747a5d7203376abeea292ab3152334d004",
219
+ "sha256:41dae968a94b1ef1897cb322b39360a0812661dba7c682aa45098eb8e193dbdf",
220
+ "sha256:4bd472dbe5e136f96a4b18f295d159d7f26fd399136f5b17b08c4e5f498cd494",
221
+ "sha256:4ea39b0ccc4f5d803e3337dd46bcce60b702be4d86fd0b3d7531ef10fd99a1ac",
222
+ "sha256:5853eb494c71e267912275e5586fe281444eb5e722de4e131cddf9d442615626",
223
+ "sha256:5bce61af018b0cb2055e0e72e7d65290d822d3feee430b7b8203d8a855e78766",
224
+ "sha256:6295ecd49304dcf3bfbfa45d9a081c96509e95f4b9d0eb7ee4ec0530c4a96514",
225
+ "sha256:62ac9cc684da4cf1778d07a89bf5f81b35834cb96ca523d3a7fb32509380cbf6",
226
+ "sha256:70e7c2e7b750585569564e2e5ca9845acfaa5da56ac46df68414f29fea97be9f",
227
+ "sha256:7577c1987baa3adc4b3c62c33bd1118c3ef5c8ddef36f0f2c950ae0b199e100d",
228
+ "sha256:75facbe9606748f43428fc91a43edb46c7ff68889b91fa31f53b58894503a191",
229
+ "sha256:787518a6789009c159453da4d6b683f468ef7a65bbde796bcea803ccf191058d",
230
+ "sha256:78d6601aed50c74e0ef02f4204da1816147a6d3fbdc8b3872d263338a9052c51",
231
+ "sha256:7c43e1e1206cd421cd92e6b3280d4385d41d7166b3ed577ac20444b6995a445f",
232
+ "sha256:81e38381b782cc7e1e46c4e14cd997ee6040768101aefc8fa3c24a4cc58e98f8",
233
+ "sha256:841293b17ad704d70c578f1f0013c890e219952169ce8a24ebc063eecf775454",
234
+ "sha256:872b8ca05c40d309ed13eb2e582cab0c5a05e81e987ab9c521bf05ad1d5cf5cb",
235
+ "sha256:877272cf6b4b7e94c9614f9b10140e198d2186363728ed0f701c6eee1baec1da",
236
+ "sha256:8c808594c88a025d4e322d5bb549282c93c8e1ba71b790f539567932722d7bd8",
237
+ "sha256:8ed58b8acf29798b036d347791141767ccf65eee7f26bde03a71c944449e53de",
238
+ "sha256:91672bacaa030f92fc2f43b620d7b337fd9a5af28b0d6ed3f77afc43c4a64b5a",
239
+ "sha256:968f44fdbf6dd757d12920d63b566eeb4d5b395fd2d00d29d7ef00a00582aac9",
240
+ "sha256:9f85003f5dfa867e86d53fac6f7e6f30c045673fa27b603c397753bebadc3008",
241
+ "sha256:a553dadda40fef6bfa1456dc4be49b113aa92c2a9a9e8711e955618cd69622e3",
242
+ "sha256:a68b62a02953b9841730db7797422f983935aeefceb1679f0fc85cbfbd311c32",
243
+ "sha256:abbe9fa13da955feb8202e215c4018f4bb57469b1b78c7a4c5c7b93001699938",
244
+ "sha256:ad881edc7ccb9d65b0224f4e4d05a1e85cf62d73aab798943df6d48ab0cd79a1",
245
+ "sha256:b1792d939ec70abe76f5054d3f36ed5656021dcad1322d1cc996d4e54165cef9",
246
+ "sha256:b428ef021242344340460fa4c9185d0b1f66fbdbfecc6c63eff4b7c29fad429d",
247
+ "sha256:b533558eae785e33e8c148a8d9921692a9fe5aa516efbdff8606e7d87b9d5824",
248
+ "sha256:ba59c92039ec0a66103b1d5fe588fa546373587a7d68f5c96f743c3396afc04b",
249
+ "sha256:bc8d3bd6c72b2dd9decf16ce70e20abcb3274ba01b4e1c96031e0c4067d1e7cd",
250
+ "sha256:bc9db8a3efb3e403e4ecc6cd9489ea2bac94244f80c78e27c31dcc00d2790ac2",
251
+ "sha256:bf7d9fce9bcc4752ca4a1b80aabd38f6d19009ea5cbda0e0856983cf6d0023f5",
252
+ "sha256:c2dbb44c3f7e6c4d3487b31037b1bdbf424d97687c1747ce4ff2895795c9bf69",
253
+ "sha256:c79ebe8f3676a4c6630fd3f777f3cfecf9289666c84e775a67d1d358578dc2e3",
254
+ "sha256:c97528e64cb9ebeff9701e7938653a9951922f2a38bd847787d4a8e498cc83ae",
255
+ "sha256:d0611a0a2a518464c05ddd5a3a1a0e856ccc10e67079bb17f265ad19ab3c7597",
256
+ "sha256:d06adcfa62a4431d404c31216f0f8ac97397d799cd53800e9d3efc2fbb3cf14e",
257
+ "sha256:d41997519fcba4a1e46eb4a2fe31bc12f0ff957b2b81bac28db24744f333e955",
258
+ "sha256:d5b61785a9ce44e5a4b880272baa7cf6c8f48a5180c3e81c59553ba0cb0821ca",
259
+ "sha256:da152d8cdcab0e56e4f45eb08b9aea6455845ec83172092f09b0e077ece2cf7a",
260
+ "sha256:da7e547706e69e45d95e116e6939488d62174e033b763ab1496b4c29b76fabea",
261
+ "sha256:db5283d90da4174865d520e7366801a93777201e91e79bacbac6e6927cbceede",
262
+ "sha256:db608a6757adabb32f1cfe6066e39b3706d8c3aa69bbc353a5b61edad36a5cb4",
263
+ "sha256:e0ea21f66820452a3f5d1655f8704a60d66ba1191359b96541eaf457710a5fc6",
264
+ "sha256:e7da3fec7408813a7cebc9e4ec55afed2d0fd65c4754bc376bf03498d4e92686",
265
+ "sha256:e92a513161077b53447160b9bd8f522edfbed4bd9759e4c18ab05d7ef7e49408",
266
+ "sha256:ecb1fa0db7bf4cff9dac752abb19505a233c7f16684c5826d1f11ebd9472b871",
267
+ "sha256:efda5fc8cc1c61e4f639b8067d118e742b812c930f708e6667a5ce0d13499e29",
268
+ "sha256:f0a1dbdb5ecbef0d34eb77e56fcb3e95bbd7e50835d9782a45df81cc46949750",
269
+ "sha256:f0a71d85ecdd570ded8ac3d1c0f480842f49a40beb423bb8014539a9f32a5897",
270
+ "sha256:f4f270de01dd3e129a72efad823da90cc4d6aafb64c410c9033aba70db9f1ff0",
271
+ "sha256:f6cb459eea32a4e2cf18ba5fcece2dbdf496384413bc1bae15583f19e567f3b2",
272
+ "sha256:f8ad8285b01b0d4695102546b342b493b3ccc6781fc28c8c6a1bb63e95d22f09",
273
+ "sha256:f9f39e2f049db33a908319cf46624a569b36983c7c78318e9726a4cb8923b26c"
274
+ ],
275
+ "markers": "python_version >= '3.7'",
276
+ "version": "==1.4.4"
277
+ },
278
+ "markdown": {
279
+ "hashes": [
280
+ "sha256:08fb8465cffd03d10b9dd34a5c3fea908e20391a2a90b88d66362cb05beed186",
281
+ "sha256:3b809086bb6efad416156e00a0da66fe47618a5d6918dd688f53f40c8e4cfeff"
282
+ ],
283
+ "markers": "python_version >= '3.7'",
284
+ "version": "==3.4.1"
285
+ },
286
+ "markupsafe": {
287
+ "hashes": [
288
+ "sha256:0212a68688482dc52b2d45013df70d169f542b7394fc744c02a57374a4207003",
289
+ "sha256:089cf3dbf0cd6c100f02945abeb18484bd1ee57a079aefd52cffd17fba910b88",
290
+ "sha256:10c1bfff05d95783da83491be968e8fe789263689c02724e0c691933c52994f5",
291
+ "sha256:33b74d289bd2f5e527beadcaa3f401e0df0a89927c1559c8566c066fa4248ab7",
292
+ "sha256:3799351e2336dc91ea70b034983ee71cf2f9533cdff7c14c90ea126bfd95d65a",
293
+ "sha256:3ce11ee3f23f79dbd06fb3d63e2f6af7b12db1d46932fe7bd8afa259a5996603",
294
+ "sha256:421be9fbf0ffe9ffd7a378aafebbf6f4602d564d34be190fc19a193232fd12b1",
295
+ "sha256:43093fb83d8343aac0b1baa75516da6092f58f41200907ef92448ecab8825135",
296
+ "sha256:46d00d6cfecdde84d40e572d63735ef81423ad31184100411e6e3388d405e247",
297
+ "sha256:4a33dea2b688b3190ee12bd7cfa29d39c9ed176bda40bfa11099a3ce5d3a7ac6",
298
+ "sha256:4b9fe39a2ccc108a4accc2676e77da025ce383c108593d65cc909add5c3bd601",
299
+ "sha256:56442863ed2b06d19c37f94d999035e15ee982988920e12a5b4ba29b62ad1f77",
300
+ "sha256:671cd1187ed5e62818414afe79ed29da836dde67166a9fac6d435873c44fdd02",
301
+ "sha256:694deca8d702d5db21ec83983ce0bb4b26a578e71fbdbd4fdcd387daa90e4d5e",
302
+ "sha256:6a074d34ee7a5ce3effbc526b7083ec9731bb3cbf921bbe1d3005d4d2bdb3a63",
303
+ "sha256:6d0072fea50feec76a4c418096652f2c3238eaa014b2f94aeb1d56a66b41403f",
304
+ "sha256:6fbf47b5d3728c6aea2abb0589b5d30459e369baa772e0f37a0320185e87c980",
305
+ "sha256:7f91197cc9e48f989d12e4e6fbc46495c446636dfc81b9ccf50bb0ec74b91d4b",
306
+ "sha256:86b1f75c4e7c2ac2ccdaec2b9022845dbb81880ca318bb7a0a01fbf7813e3812",
307
+ "sha256:8dc1c72a69aa7e082593c4a203dcf94ddb74bb5c8a731e4e1eb68d031e8498ff",
308
+ "sha256:8e3dcf21f367459434c18e71b2a9532d96547aef8a871872a5bd69a715c15f96",
309
+ "sha256:8e576a51ad59e4bfaac456023a78f6b5e6e7651dcd383bcc3e18d06f9b55d6d1",
310
+ "sha256:96e37a3dc86e80bf81758c152fe66dbf60ed5eca3d26305edf01892257049925",
311
+ "sha256:97a68e6ada378df82bc9f16b800ab77cbf4b2fada0081794318520138c088e4a",
312
+ "sha256:99a2a507ed3ac881b975a2976d59f38c19386d128e7a9a18b7df6fff1fd4c1d6",
313
+ "sha256:a49907dd8420c5685cfa064a1335b6754b74541bbb3706c259c02ed65b644b3e",
314
+ "sha256:b09bf97215625a311f669476f44b8b318b075847b49316d3e28c08e41a7a573f",
315
+ "sha256:b7bd98b796e2b6553da7225aeb61f447f80a1ca64f41d83612e6139ca5213aa4",
316
+ "sha256:b87db4360013327109564f0e591bd2a3b318547bcef31b468a92ee504d07ae4f",
317
+ "sha256:bcb3ed405ed3222f9904899563d6fc492ff75cce56cba05e32eff40e6acbeaa3",
318
+ "sha256:d4306c36ca495956b6d568d276ac11fdd9c30a36f1b6eb928070dc5360b22e1c",
319
+ "sha256:d5ee4f386140395a2c818d149221149c54849dfcfcb9f1debfe07a8b8bd63f9a",
320
+ "sha256:dda30ba7e87fbbb7eab1ec9f58678558fd9a6b8b853530e176eabd064da81417",
321
+ "sha256:e04e26803c9c3851c931eac40c695602c6295b8d432cbe78609649ad9bd2da8a",
322
+ "sha256:e1c0b87e09fa55a220f058d1d49d3fb8df88fbfab58558f1198e08c1e1de842a",
323
+ "sha256:e72591e9ecd94d7feb70c1cbd7be7b3ebea3f548870aa91e2732960fa4d57a37",
324
+ "sha256:e8c843bbcda3a2f1e3c2ab25913c80a3c5376cd00c6e8c4a86a89a28c8dc5452",
325
+ "sha256:efc1913fd2ca4f334418481c7e595c00aad186563bbc1ec76067848c7ca0a933",
326
+ "sha256:f121a1420d4e173a5d96e47e9a0c0dcff965afdf1626d28de1460815f7c4ee7a",
327
+ "sha256:fc7b548b17d238737688817ab67deebb30e8073c95749d55538ed473130ec0c7"
328
+ ],
329
+ "markers": "python_version >= '3.7'",
330
+ "version": "==2.1.1"
331
+ },
332
+ "matplotlib": {
333
+ "hashes": [
334
+ "sha256:0bcdfcb0f976e1bac6721d7d457c17be23cf7501f977b6a38f9d38a3762841f7",
335
+ "sha256:1e64ac9be9da6bfff0a732e62116484b93b02a0b4d4b19934fb4f8e7ad26ad6a",
336
+ "sha256:22227c976ad4dc8c5a5057540421f0d8708c6560744ad2ad638d48e2984e1dbc",
337
+ "sha256:2886cc009f40e2984c083687251821f305d811d38e3df8ded414265e4583f0c5",
338
+ "sha256:2e6d184ebe291b9e8f7e78bbab7987d269c38ea3e062eace1fe7d898042ef804",
339
+ "sha256:3211ba82b9f1518d346f6309df137b50c3dc4421b4ed4815d1d7eadc617f45a1",
340
+ "sha256:339cac48b80ddbc8bfd05daae0a3a73414651a8596904c2a881cfd1edb65f26c",
341
+ "sha256:35a8ad4dddebd51f94c5d24bec689ec0ec66173bf614374a1244c6241c1595e0",
342
+ "sha256:3b4fa56159dc3c7f9250df88f653f085068bcd32dcd38e479bba58909254af7f",
343
+ "sha256:43e9d3fa077bf0cc95ded13d331d2156f9973dce17c6f0c8b49ccd57af94dbd9",
344
+ "sha256:57f1b4e69f438a99bb64d7f2c340db1b096b41ebaa515cf61ea72624279220ce",
345
+ "sha256:5c096363b206a3caf43773abebdbb5a23ea13faef71d701b21a9c27fdcef72f4",
346
+ "sha256:6bb93a0492d68461bd458eba878f52fdc8ac7bdb6c4acdfe43dba684787838c2",
347
+ "sha256:6ea6aef5c4338e58d8d376068e28f80a24f54e69f09479d1c90b7172bad9f25b",
348
+ "sha256:6fe807e8a22620b4cd95cfbc795ba310dc80151d43b037257250faf0bfcd82bc",
349
+ "sha256:73dd93dc35c85dece610cca8358003bf0760d7986f70b223e2306b4ea6d1406b",
350
+ "sha256:839d47b8ead7ad9669aaacdbc03f29656dc21f0d41a6fea2d473d856c39c8b1c",
351
+ "sha256:874df7505ba820e0400e7091199decf3ff1fde0583652120c50cd60d5820ca9a",
352
+ "sha256:879c7e5fce4939c6aa04581dfe08d57eb6102a71f2e202e3314d5fbc072fd5a0",
353
+ "sha256:94ff86af56a3869a4ae26a9637a849effd7643858a1a04dd5ee50e9ab75069a7",
354
+ "sha256:99482b83ebf4eb6d5fc6813d7aacdefdd480f0d9c0b52dcf9f1cc3b2c4b3361a",
355
+ "sha256:9ab29589cef03bc88acfa3a1490359000c18186fc30374d8aa77d33cc4a51a4a",
356
+ "sha256:9befa5954cdbc085e37d974ff6053da269474177921dd61facdad8023c4aeb51",
357
+ "sha256:a206a1b762b39398efea838f528b3a6d60cdb26fe9d58b48265787e29cd1d693",
358
+ "sha256:ab8d26f07fe64f6f6736d635cce7bfd7f625320490ed5bfc347f2cdb4fae0e56",
359
+ "sha256:b28de401d928890187c589036857a270a032961411934bdac4cf12dde3d43094",
360
+ "sha256:b428076a55fb1c084c76cb93e68006f27d247169f056412607c5c88828d08f88",
361
+ "sha256:bf618a825deb6205f015df6dfe6167a5d9b351203b03fab82043ae1d30f16511",
362
+ "sha256:c995f7d9568f18b5db131ab124c64e51b6820a92d10246d4f2b3f3a66698a15b",
363
+ "sha256:cd45a6f3e93a780185f70f05cf2a383daed13c3489233faad83e81720f7ede24",
364
+ "sha256:d2484b350bf3d32cae43f85dcfc89b3ed7bd2bcd781ef351f93eb6fb2cc483f9",
365
+ "sha256:d62880e1f60e5a30a2a8484432bcb3a5056969dc97258d7326ad465feb7ae069",
366
+ "sha256:dacddf5bfcec60e3f26ec5c0ae3d0274853a258b6c3fc5ef2f06a8eb23e042be",
367
+ "sha256:f3840c280ebc87a48488a46f760ea1c0c0c83fcf7abbe2e6baf99d033fd35fd8",
368
+ "sha256:f814504e459c68118bf2246a530ed953ebd18213dc20e3da524174d84ed010b2"
369
+ ],
370
+ "index": "pypi",
371
+ "version": "==3.5.3"
372
+ },
373
+ "matplotlib-inline": {
374
+ "hashes": [
375
+ "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311",
376
+ "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"
377
+ ],
378
+ "markers": "python_version >= '3.5'",
379
+ "version": "==0.1.6"
380
+ },
381
+ "numpy": {
382
+ "hashes": [
383
+ "sha256:17e5226674f6ea79e14e3b91bfbc153fdf3ac13f5cc54ee7bc8fdbe820a32da0",
384
+ "sha256:2bd879d3ca4b6f39b7770829f73278b7c5e248c91d538aab1e506c628353e47f",
385
+ "sha256:4f41f5bf20d9a521f8cab3a34557cd77b6f205ab2116651f12959714494268b0",
386
+ "sha256:5593f67e66dea4e237f5af998d31a43e447786b2154ba1ad833676c788f37cde",
387
+ "sha256:5e28cd64624dc2354a349152599e55308eb6ca95a13ce6a7d5679ebff2962913",
388
+ "sha256:633679a472934b1c20a12ed0c9a6c9eb167fbb4cb89031939bfd03dd9dbc62b8",
389
+ "sha256:806970e69106556d1dd200e26647e9bee5e2b3f1814f9da104a943e8d548ca38",
390
+ "sha256:806cc25d5c43e240db709875e947076b2826f47c2c340a5a2f36da5bb10c58d6",
391
+ "sha256:8247f01c4721479e482cc2f9f7d973f3f47810cbc8c65e38fd1bbd3141cc9842",
392
+ "sha256:8ebf7e194b89bc66b78475bd3624d92980fca4e5bb86dda08d677d786fefc414",
393
+ "sha256:8ecb818231afe5f0f568c81f12ce50f2b828ff2b27487520d85eb44c71313b9e",
394
+ "sha256:8f9d84a24889ebb4c641a9b99e54adb8cab50972f0166a3abc14c3b93163f074",
395
+ "sha256:909c56c4d4341ec8315291a105169d8aae732cfb4c250fbc375a1efb7a844f8f",
396
+ "sha256:9b83d48e464f393d46e8dd8171687394d39bc5abfe2978896b77dc2604e8635d",
397
+ "sha256:ac987b35df8c2a2eab495ee206658117e9ce867acf3ccb376a19e83070e69418",
398
+ "sha256:b78d00e48261fbbd04aa0d7427cf78d18401ee0abd89c7559bbf422e5b1c7d01",
399
+ "sha256:b8b97a8a87cadcd3f94659b4ef6ec056261fa1e1c3317f4193ac231d4df70215",
400
+ "sha256:bd5b7ccae24e3d8501ee5563e82febc1771e73bd268eef82a1e8d2b4d556ae66",
401
+ "sha256:bdc02c0235b261925102b1bd586579b7158e9d0d07ecb61148a1799214a4afd5",
402
+ "sha256:be6b350dfbc7f708d9d853663772a9310783ea58f6035eec649fb9c4371b5389",
403
+ "sha256:c403c81bb8ffb1c993d0165a11493fd4bf1353d258f6997b3ee288b0a48fce77",
404
+ "sha256:cf8c6aed12a935abf2e290860af8e77b26a042eb7f2582ff83dc7ed5f963340c",
405
+ "sha256:d98addfd3c8728ee8b2c49126f3c44c703e2b005d4a95998e2167af176a9e722",
406
+ "sha256:dc76bca1ca98f4b122114435f83f1fcf3c0fe48e4e6f660e07996abf2f53903c",
407
+ "sha256:dec198619b7dbd6db58603cd256e092bcadef22a796f778bf87f8592b468441d",
408
+ "sha256:df28dda02c9328e122661f399f7655cdcbcf22ea42daa3650a26bce08a187450",
409
+ "sha256:e603ca1fb47b913942f3e660a15e55a9ebca906857edfea476ae5f0fe9b457d5",
410
+ "sha256:ecfdd68d334a6b97472ed032b5b37a30d8217c097acfff15e8452c710e775524"
411
+ ],
412
+ "index": "pypi",
413
+ "version": "==1.23.2"
414
+ },
415
+ "oauthlib": {
416
+ "hashes": [
417
+ "sha256:23a8208d75b902797ea29fd31fa80a15ed9dc2c6c16fe73f5d346f83f6fa27a2",
418
+ "sha256:6db33440354787f9b7f3a6dbd4febf5d0f93758354060e802f6c06cb493022fe"
419
+ ],
420
+ "markers": "python_version >= '3.6'",
421
+ "version": "==3.2.0"
422
+ },
423
+ "opencv-python": {
424
+ "hashes": [
425
+ "sha256:0dc82a3d8630c099d2f3ac1b1aabee164e8188db54a786abb7a4e27eba309440",
426
+ "sha256:5af8ba35a4fcb8913ffb86e92403e9a656a4bff4a645d196987468f0f8947875",
427
+ "sha256:6e32af22e3202748bd233ed8f538741876191863882eba44e332d1a34993165b",
428
+ "sha256:c5bfae41ad4031e66bb10ec4a0a2ffd3e514d092652781e8b1ac98d1b59f1158",
429
+ "sha256:dbdc84a9b4ea2cbae33861652d25093944b9959279200b7ae0badd32439f74de",
430
+ "sha256:e6e448b62afc95c5b58f97e87ef84699e6607fe5c58730a03301c52496005cae",
431
+ "sha256:f482e78de6e7b0b060ff994ffd859bddc3f7f382bb2019ef157b0ea8ca8712f5"
432
+ ],
433
+ "index": "pypi",
434
+ "version": "==4.6.0.66"
435
+ },
436
+ "packaging": {
437
+ "hashes": [
438
+ "sha256:dd47c42927d89ab911e606518907cc2d3a1f38bbd026385970643f9c5b8ecfeb",
439
+ "sha256:ef103e05f519cdc783ae24ea4e2e0f508a9c99b2d4969652eed6a2e1ea5bd522"
440
+ ],
441
+ "markers": "python_version >= '3.6'",
442
+ "version": "==21.3"
443
+ },
444
+ "pandas": {
445
+ "hashes": [
446
+ "sha256:07238a58d7cbc8a004855ade7b75bbd22c0db4b0ffccc721556bab8a095515f6",
447
+ "sha256:0daf876dba6c622154b2e6741f29e87161f844e64f84801554f879d27ba63c0d",
448
+ "sha256:16ad23db55efcc93fa878f7837267973b61ea85d244fc5ff0ccbcfa5638706c5",
449
+ "sha256:1d9382f72a4f0e93909feece6fef5500e838ce1c355a581b3d8f259839f2ea76",
450
+ "sha256:24ea75f47bbd5574675dae21d51779a4948715416413b30614c1e8b480909f81",
451
+ "sha256:2893e923472a5e090c2d5e8db83e8f907364ec048572084c7d10ef93546be6d1",
452
+ "sha256:2ff7788468e75917574f080cd4681b27e1a7bf36461fe968b49a87b5a54d007c",
453
+ "sha256:41fc406e374590a3d492325b889a2686b31e7a7780bec83db2512988550dadbf",
454
+ "sha256:48350592665ea3cbcd07efc8c12ff12d89be09cd47231c7925e3b8afada9d50d",
455
+ "sha256:605d572126eb4ab2eadf5c59d5d69f0608df2bf7bcad5c5880a47a20a0699e3e",
456
+ "sha256:6dfbf16b1ea4f4d0ee11084d9c026340514d1d30270eaa82a9f1297b6c8ecbf0",
457
+ "sha256:6f803320c9da732cc79210d7e8cc5c8019aad512589c910c66529eb1b1818230",
458
+ "sha256:721a3dd2f06ef942f83a819c0f3f6a648b2830b191a72bbe9451bcd49c3bd42e",
459
+ "sha256:755679c49460bd0d2f837ab99f0a26948e68fa0718b7e42afbabd074d945bf84",
460
+ "sha256:78b00429161ccb0da252229bcda8010b445c4bf924e721265bec5a6e96a92e92",
461
+ "sha256:958a0588149190c22cdebbc0797e01972950c927a11a900fe6c2296f207b1d6f",
462
+ "sha256:a3924692160e3d847e18702bb048dc38e0e13411d2b503fecb1adf0fcf950ba4",
463
+ "sha256:d51674ed8e2551ef7773820ef5dab9322be0828629f2cbf8d1fc31a0c4fed640",
464
+ "sha256:d5ebc990bd34f4ac3c73a2724c2dcc9ee7bf1ce6cf08e87bb25c6ad33507e318",
465
+ "sha256:d6c0106415ff1a10c326c49bc5dd9ea8b9897a6ca0c8688eb9c30ddec49535ef",
466
+ "sha256:e48fbb64165cda451c06a0f9e4c7a16b534fcabd32546d531b3c240ce2844112"
467
+ ],
468
+ "index": "pypi",
469
+ "version": "==1.4.3"
470
+ },
471
+ "parso": {
472
+ "hashes": [
473
+ "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0",
474
+ "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"
475
+ ],
476
+ "markers": "python_version >= '3.6'",
477
+ "version": "==0.8.3"
478
+ },
479
+ "pexpect": {
480
+ "hashes": [
481
+ "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937",
482
+ "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c"
483
+ ],
484
+ "markers": "sys_platform != 'win32'",
485
+ "version": "==4.8.0"
486
+ },
487
+ "pickleshare": {
488
+ "hashes": [
489
+ "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca",
490
+ "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"
491
+ ],
492
+ "version": "==0.7.5"
493
+ },
494
+ "pillow": {
495
+ "hashes": [
496
+ "sha256:0030fdbd926fb85844b8b92e2f9449ba89607231d3dd597a21ae72dc7fe26927",
497
+ "sha256:030e3460861488e249731c3e7ab59b07c7853838ff3b8e16aac9561bb345da14",
498
+ "sha256:0ed2c4ef2451de908c90436d6e8092e13a43992f1860275b4d8082667fbb2ffc",
499
+ "sha256:136659638f61a251e8ed3b331fc6ccd124590eeff539de57c5f80ef3a9594e58",
500
+ "sha256:13b725463f32df1bfeacbf3dd197fb358ae8ebcd8c5548faa75126ea425ccb60",
501
+ "sha256:1536ad017a9f789430fb6b8be8bf99d2f214c76502becc196c6f2d9a75b01b76",
502
+ "sha256:15928f824870535c85dbf949c09d6ae7d3d6ac2d6efec80f3227f73eefba741c",
503
+ "sha256:17d4cafe22f050b46d983b71c707162d63d796a1235cdf8b9d7a112e97b15bac",
504
+ "sha256:1802f34298f5ba11d55e5bb09c31997dc0c6aed919658dfdf0198a2fe75d5490",
505
+ "sha256:1cc1d2451e8a3b4bfdb9caf745b58e6c7a77d2e469159b0d527a4554d73694d1",
506
+ "sha256:1fd6f5e3c0e4697fa7eb45b6e93996299f3feee73a3175fa451f49a74d092b9f",
507
+ "sha256:254164c57bab4b459f14c64e93df11eff5ded575192c294a0c49270f22c5d93d",
508
+ "sha256:2ad0d4df0f5ef2247e27fc790d5c9b5a0af8ade9ba340db4a73bb1a4a3e5fb4f",
509
+ "sha256:2c58b24e3a63efd22554c676d81b0e57f80e0a7d3a5874a7e14ce90ec40d3069",
510
+ "sha256:2d33a11f601213dcd5718109c09a52c2a1c893e7461f0be2d6febc2879ec2402",
511
+ "sha256:337a74fd2f291c607d220c793a8135273c4c2ab001b03e601c36766005f36885",
512
+ "sha256:37ff6b522a26d0538b753f0b4e8e164fdada12db6c6f00f62145d732d8a3152e",
513
+ "sha256:3d1f14f5f691f55e1b47f824ca4fdcb4b19b4323fe43cc7bb105988cad7496be",
514
+ "sha256:408673ed75594933714482501fe97e055a42996087eeca7e5d06e33218d05aa8",
515
+ "sha256:4134d3f1ba5f15027ff5c04296f13328fecd46921424084516bdb1b2548e66ff",
516
+ "sha256:4ad2f835e0ad81d1689f1b7e3fbac7b01bb8777d5a985c8962bedee0cc6d43da",
517
+ "sha256:50dff9cc21826d2977ef2d2a205504034e3a4563ca6f5db739b0d1026658e004",
518
+ "sha256:510cef4a3f401c246cfd8227b300828715dd055463cdca6176c2e4036df8bd4f",
519
+ "sha256:5aed7dde98403cd91d86a1115c78d8145c83078e864c1de1064f52e6feb61b20",
520
+ "sha256:69bd1a15d7ba3694631e00df8de65a8cb031911ca11f44929c97fe05eb9b6c1d",
521
+ "sha256:6bf088c1ce160f50ea40764f825ec9b72ed9da25346216b91361eef8ad1b8f8c",
522
+ "sha256:6e8c66f70fb539301e064f6478d7453e820d8a2c631da948a23384865cd95544",
523
+ "sha256:727dd1389bc5cb9827cbd1f9d40d2c2a1a0c9b32dd2261db522d22a604a6eec9",
524
+ "sha256:74a04183e6e64930b667d321524e3c5361094bb4af9083db5c301db64cd341f3",
525
+ "sha256:75e636fd3e0fb872693f23ccb8a5ff2cd578801251f3a4f6854c6a5d437d3c04",
526
+ "sha256:7761afe0126d046974a01e030ae7529ed0ca6a196de3ec6937c11df0df1bc91c",
527
+ "sha256:7888310f6214f19ab2b6df90f3f06afa3df7ef7355fc025e78a3044737fab1f5",
528
+ "sha256:7b0554af24df2bf96618dac71ddada02420f946be943b181108cac55a7a2dcd4",
529
+ "sha256:7c7b502bc34f6e32ba022b4a209638f9e097d7a9098104ae420eb8186217ebbb",
530
+ "sha256:808add66ea764ed97d44dda1ac4f2cfec4c1867d9efb16a33d158be79f32b8a4",
531
+ "sha256:831e648102c82f152e14c1a0938689dbb22480c548c8d4b8b248b3e50967b88c",
532
+ "sha256:93689632949aff41199090eff5474f3990b6823404e45d66a5d44304e9cdc467",
533
+ "sha256:96b5e6874431df16aee0c1ba237574cb6dff1dcb173798faa6a9d8b399a05d0e",
534
+ "sha256:9a54614049a18a2d6fe156e68e188da02a046a4a93cf24f373bffd977e943421",
535
+ "sha256:a138441e95562b3c078746a22f8fca8ff1c22c014f856278bdbdd89ca36cff1b",
536
+ "sha256:a647c0d4478b995c5e54615a2e5360ccedd2f85e70ab57fbe817ca613d5e63b8",
537
+ "sha256:a9c9bc489f8ab30906d7a85afac4b4944a572a7432e00698a7239f44a44e6efb",
538
+ "sha256:ad2277b185ebce47a63f4dc6302e30f05762b688f8dc3de55dbae4651872cdf3",
539
+ "sha256:b6d5e92df2b77665e07ddb2e4dbd6d644b78e4c0d2e9272a852627cdba0d75cf",
540
+ "sha256:bc431b065722a5ad1dfb4df354fb9333b7a582a5ee39a90e6ffff688d72f27a1",
541
+ "sha256:bdd0de2d64688ecae88dd8935012c4a72681e5df632af903a1dca8c5e7aa871a",
542
+ "sha256:c79698d4cd9318d9481d89a77e2d3fcaeff5486be641e60a4b49f3d2ecca4e28",
543
+ "sha256:cb6259196a589123d755380b65127ddc60f4c64b21fc3bb46ce3a6ea663659b0",
544
+ "sha256:d5b87da55a08acb586bad5c3aa3b86505f559b84f39035b233d5bf844b0834b1",
545
+ "sha256:dcd7b9c7139dc8258d164b55696ecd16c04607f1cc33ba7af86613881ffe4ac8",
546
+ "sha256:dfe4c1fedfde4e2fbc009d5ad420647f7730d719786388b7de0999bf32c0d9fd",
547
+ "sha256:ea98f633d45f7e815db648fd7ff0f19e328302ac36427343e4432c84432e7ff4",
548
+ "sha256:ec52c351b35ca269cb1f8069d610fc45c5bd38c3e91f9ab4cbbf0aebc136d9c8",
549
+ "sha256:eef7592281f7c174d3d6cbfbb7ee5984a671fcd77e3fc78e973d492e9bf0eb3f",
550
+ "sha256:f07f1f00e22b231dd3d9b9208692042e29792d6bd4f6639415d2f23158a80013",
551
+ "sha256:f3fac744f9b540148fa7715a435d2283b71f68bfb6d4aae24482a890aed18b59",
552
+ "sha256:fa768eff5f9f958270b081bb33581b4b569faabf8774726b283edb06617101dc",
553
+ "sha256:fac2d65901fb0fdf20363fbd345c01958a742f2dc62a8dd4495af66e3ff502a4"
554
+ ],
555
+ "index": "pypi",
556
+ "version": "==9.2.0"
557
+ },
558
+ "prompt-toolkit": {
559
+ "hashes": [
560
+ "sha256:859b283c50bde45f5f97829f77a4674d1c1fcd88539364f1b28a37805cfd89c0",
561
+ "sha256:d8916d3f62a7b67ab353a952ce4ced6a1d2587dfe9ef8ebc30dd7c386751f289"
562
+ ],
563
+ "markers": "python_full_version >= '3.6.2'",
564
+ "version": "==3.0.30"
565
+ },
566
+ "protobuf": {
567
+ "hashes": [
568
+ "sha256:072fbc78d705d3edc7ccac58a62c4c8e0cec856987da7df8aca86e647be4e35c",
569
+ "sha256:09297b7972da685ce269ec52af761743714996b4381c085205914c41fcab59fb",
570
+ "sha256:16f519de1313f1b7139ad70772e7db515b1420d208cb16c6d7858ea989fc64a9",
571
+ "sha256:1c91ef4110fdd2c590effb5dca8fdbdcb3bf563eece99287019c4204f53d81a4",
572
+ "sha256:3112b58aac3bac9c8be2b60a9daf6b558ca3f7681c130dcdd788ade7c9ffbdca",
573
+ "sha256:36cecbabbda242915529b8ff364f2263cd4de7c46bbe361418b5ed859677ba58",
574
+ "sha256:4276cdec4447bd5015453e41bdc0c0c1234eda08420b7c9a18b8d647add51e4b",
575
+ "sha256:435bb78b37fc386f9275a7035fe4fb1364484e38980d0dd91bc834a02c5ec909",
576
+ "sha256:48ed3877fa43e22bcacc852ca76d4775741f9709dd9575881a373bd3e85e54b2",
577
+ "sha256:54a1473077f3b616779ce31f477351a45b4fef8c9fd7892d6d87e287a38df368",
578
+ "sha256:69da7d39e39942bd52848438462674c463e23963a1fdaa84d88df7fbd7e749b2",
579
+ "sha256:6cbc312be5e71869d9d5ea25147cdf652a6781cf4d906497ca7690b7b9b5df13",
580
+ "sha256:7bb03bc2873a2842e5ebb4801f5c7ff1bfbdf426f85d0172f7644fcda0671ae0",
581
+ "sha256:7ca7da9c339ca8890d66958f5462beabd611eca6c958691a8fe6eccbd1eb0c6e",
582
+ "sha256:835a9c949dc193953c319603b2961c5c8f4327957fe23d914ca80d982665e8ee",
583
+ "sha256:84123274d982b9e248a143dadd1b9815049f4477dc783bf84efe6250eb4b836a",
584
+ "sha256:8961c3a78ebfcd000920c9060a262f082f29838682b1f7201889300c1fbe0616",
585
+ "sha256:96bd766831596d6014ca88d86dc8fe0fb2e428c0b02432fd9db3943202bf8c5e",
586
+ "sha256:9df0c10adf3e83015ced42a9a7bd64e13d06c4cf45c340d2c63020ea04499d0a",
587
+ "sha256:b38057450a0c566cbd04890a40edf916db890f2818e8682221611d78dc32ae26",
588
+ "sha256:bd95d1dfb9c4f4563e6093a9aa19d9c186bf98fa54da5252531cc0d3a07977e7",
589
+ "sha256:c1068287025f8ea025103e37d62ffd63fec8e9e636246b89c341aeda8a67c934",
590
+ "sha256:c438268eebb8cf039552897d78f402d734a404f1360592fef55297285f7f953f",
591
+ "sha256:cdc076c03381f5c1d9bb1abdcc5503d9ca8b53cf0a9d31a9f6754ec9e6c8af0f",
592
+ "sha256:f358aa33e03b7a84e0d91270a4d4d8f5df6921abe99a377828839e8ed0c04e07",
593
+ "sha256:f51d5a9f137f7a2cec2d326a74b6e3fc79d635d69ffe1b036d39fc7d75430d37"
594
+ ],
595
+ "index": "pypi",
596
+ "version": "==3.19.4"
597
+ },
598
+ "psutil": {
599
+ "hashes": [
600
+ "sha256:068935df39055bf27a29824b95c801c7a5130f118b806eee663cad28dca97685",
601
+ "sha256:0904727e0b0a038830b019551cf3204dd48ef5c6868adc776e06e93d615fc5fc",
602
+ "sha256:0f15a19a05f39a09327345bc279c1ba4a8cfb0172cc0d3c7f7d16c813b2e7d36",
603
+ "sha256:19f36c16012ba9cfc742604df189f2f28d2720e23ff7d1e81602dbe066be9fd1",
604
+ "sha256:20b27771b077dcaa0de1de3ad52d22538fe101f9946d6dc7869e6f694f079329",
605
+ "sha256:28976df6c64ddd6320d281128817f32c29b539a52bdae5e192537bc338a9ec81",
606
+ "sha256:29a442e25fab1f4d05e2655bb1b8ab6887981838d22effa2396d584b740194de",
607
+ "sha256:3054e923204b8e9c23a55b23b6df73a8089ae1d075cb0bf711d3e9da1724ded4",
608
+ "sha256:32c52611756096ae91f5d1499fe6c53b86f4a9ada147ee42db4991ba1520e574",
609
+ "sha256:3a76ad658641172d9c6e593de6fe248ddde825b5866464c3b2ee26c35da9d237",
610
+ "sha256:44d1826150d49ffd62035785a9e2c56afcea66e55b43b8b630d7706276e87f22",
611
+ "sha256:4b6750a73a9c4a4e689490ccb862d53c7b976a2a35c4e1846d049dcc3f17d83b",
612
+ "sha256:56960b9e8edcca1456f8c86a196f0c3d8e3e361320071c93378d41445ffd28b0",
613
+ "sha256:57f1819b5d9e95cdfb0c881a8a5b7d542ed0b7c522d575706a80bedc848c8954",
614
+ "sha256:58678bbadae12e0db55186dc58f2888839228ac9f41cc7848853539b70490021",
615
+ "sha256:645bd4f7bb5b8633803e0b6746ff1628724668681a434482546887d22c7a9537",
616
+ "sha256:799759d809c31aab5fe4579e50addf84565e71c1dc9f1c31258f159ff70d3f87",
617
+ "sha256:79c9108d9aa7fa6fba6e668b61b82facc067a6b81517cab34d07a84aa89f3df0",
618
+ "sha256:91c7ff2a40c373d0cc9121d54bc5f31c4fa09c346528e6a08d1845bce5771ffc",
619
+ "sha256:9272167b5f5fbfe16945be3db475b3ce8d792386907e673a209da686176552af",
620
+ "sha256:944c4b4b82dc4a1b805329c980f270f170fdc9945464223f2ec8e57563139cf4",
621
+ "sha256:a6a11e48cb93a5fa606306493f439b4aa7c56cb03fc9ace7f6bfa21aaf07c453",
622
+ "sha256:a8746bfe4e8f659528c5c7e9af5090c5a7d252f32b2e859c584ef7d8efb1e689",
623
+ "sha256:abd9246e4cdd5b554a2ddd97c157e292ac11ef3e7af25ac56b08b455c829dca8",
624
+ "sha256:b14ee12da9338f5e5b3a3ef7ca58b3cba30f5b66f7662159762932e6d0b8f680",
625
+ "sha256:b88f75005586131276634027f4219d06e0561292be8bd6bc7f2f00bdabd63c4e",
626
+ "sha256:c7be9d7f5b0d206f0bbc3794b8e16fb7dbc53ec9e40bbe8787c6f2d38efcf6c9",
627
+ "sha256:d2d006286fbcb60f0b391741f520862e9b69f4019b4d738a2a45728c7e952f1b",
628
+ "sha256:db417f0865f90bdc07fa30e1aadc69b6f4cad7f86324b02aa842034efe8d8c4d",
629
+ "sha256:e7e10454cb1ab62cc6ce776e1c135a64045a11ec4c6d254d3f7689c16eb3efd2",
630
+ "sha256:f65f9a46d984b8cd9b3750c2bdb419b2996895b005aefa6cbaba9a143b1ce2c5",
631
+ "sha256:fea896b54f3a4ae6f790ac1d017101252c93f6fe075d0e7571543510f11d2676"
632
+ ],
633
+ "index": "pypi",
634
+ "version": "==5.9.1"
635
+ },
636
+ "ptyprocess": {
637
+ "hashes": [
638
+ "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35",
639
+ "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"
640
+ ],
641
+ "version": "==0.7.0"
642
+ },
643
+ "pure-eval": {
644
+ "hashes": [
645
+ "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350",
646
+ "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"
647
+ ],
648
+ "version": "==0.2.2"
649
+ },
650
+ "pyasn1": {
651
+ "hashes": [
652
+ "sha256:014c0e9976956a08139dc0712ae195324a75e142284d5f87f1a87ee1b068a359",
653
+ "sha256:03840c999ba71680a131cfaee6fab142e1ed9bbd9c693e285cc6aca0d555e576",
654
+ "sha256:0458773cfe65b153891ac249bcf1b5f8f320b7c2ce462151f8fa74de8934becf",
655
+ "sha256:08c3c53b75eaa48d71cf8c710312316392ed40899cb34710d092e96745a358b7",
656
+ "sha256:39c7e2ec30515947ff4e87fb6f456dfc6e84857d34be479c9d4a4ba4bf46aa5d",
657
+ "sha256:5c9414dcfede6e441f7e8f81b43b34e834731003427e5b09e4e00e3172a10f00",
658
+ "sha256:6e7545f1a61025a4e58bb336952c5061697da694db1cae97b116e9c46abcf7c8",
659
+ "sha256:78fa6da68ed2727915c4767bb386ab32cdba863caa7dbe473eaae45f9959da86",
660
+ "sha256:7ab8a544af125fb704feadb008c99a88805126fb525280b2270bb25cc1d78a12",
661
+ "sha256:99fcc3c8d804d1bc6d9a099921e39d827026409a58f2a720dcdb89374ea0c776",
662
+ "sha256:aef77c9fb94a3ac588e87841208bdec464471d9871bd5050a287cc9a475cd0ba",
663
+ "sha256:e89bf84b5437b532b0803ba5c9a5e054d21fec423a89952a74f87fa2c9b7bce2",
664
+ "sha256:fec3e9d8e36808a28efb59b489e4528c10ad0f480e57dcc32b4de5c9d8c9fdf3"
665
+ ],
666
+ "version": "==0.4.8"
667
+ },
668
+ "pyasn1-modules": {
669
+ "hashes": [
670
+ "sha256:0845a5582f6a02bb3e1bde9ecfc4bfcae6ec3210dd270522fee602365430c3f8",
671
+ "sha256:0fe1b68d1e486a1ed5473f1302bd991c1611d319bba158e98b106ff86e1d7199",
672
+ "sha256:15b7c67fabc7fc240d87fb9aabf999cf82311a6d6fb2c70d00d3d0604878c811",
673
+ "sha256:426edb7a5e8879f1ec54a1864f16b882c2837bfd06eee62f2c982315ee2473ed",
674
+ "sha256:65cebbaffc913f4fe9e4808735c95ea22d7a7775646ab690518c056784bc21b4",
675
+ "sha256:905f84c712230b2c592c19470d3ca8d552de726050d1d1716282a1f6146be65e",
676
+ "sha256:a50b808ffeb97cb3601dd25981f6b016cbb3d31fbf57a8b8a87428e6158d0c74",
677
+ "sha256:a99324196732f53093a84c4369c996713eb8c89d360a496b599fb1a9c47fc3eb",
678
+ "sha256:b80486a6c77252ea3a3e9b1e360bc9cf28eaac41263d173c032581ad2f20fe45",
679
+ "sha256:c29a5e5cc7a3f05926aff34e097e84f8589cd790ce0ed41b67aed6857b26aafd",
680
+ "sha256:cbac4bc38d117f2a49aeedec4407d23e8866ea4ac27ff2cf7fb3e5b570df19e0",
681
+ "sha256:f39edd8c4ecaa4556e989147ebf219227e2cd2e8a43c7e7fcb1f1c18c5fd6a3d",
682
+ "sha256:fe0644d9ab041506b62782e92b06b8c68cca799e1a9636ec398675459e031405"
683
+ ],
684
+ "version": "==0.2.8"
685
+ },
686
+ "pygments": {
687
+ "hashes": [
688
+ "sha256:56a8508ae95f98e2b9bdf93a6be5ae3f7d8af858b43e02c5a2ff083726be40c1",
689
+ "sha256:f643f331ab57ba3c9d89212ee4a2dabc6e94f117cf4eefde99a0574720d14c42"
690
+ ],
691
+ "markers": "python_version >= '3.6'",
692
+ "version": "==2.13.0"
693
+ },
694
+ "pyparsing": {
695
+ "hashes": [
696
+ "sha256:2b020ecf7d21b687f219b71ecad3631f644a47f01403fa1d1036b0c6416d70fb",
697
+ "sha256:5026bae9a10eeaefb61dab2f09052b9f4307d44aee4eda64b309723d8d206bbc"
698
+ ],
699
+ "markers": "python_full_version >= '3.6.8'",
700
+ "version": "==3.0.9"
701
+ },
702
+ "python-dateutil": {
703
+ "hashes": [
704
+ "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86",
705
+ "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"
706
+ ],
707
+ "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2'",
708
+ "version": "==2.8.2"
709
+ },
710
+ "pytz": {
711
+ "hashes": [
712
+ "sha256:220f481bdafa09c3955dfbdddb7b57780e9a94f5127e35456a48589b9e0c0197",
713
+ "sha256:cea221417204f2d1a2aa03ddae3e867921971d0d76f14d87abb4414415bbdcf5"
714
+ ],
715
+ "version": "==2022.2.1"
716
+ },
717
+ "pyyaml": {
718
+ "hashes": [
719
+ "sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293",
720
+ "sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b",
721
+ "sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57",
722
+ "sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b",
723
+ "sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4",
724
+ "sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07",
725
+ "sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba",
726
+ "sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9",
727
+ "sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287",
728
+ "sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513",
729
+ "sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0",
730
+ "sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0",
731
+ "sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92",
732
+ "sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f",
733
+ "sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2",
734
+ "sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc",
735
+ "sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c",
736
+ "sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86",
737
+ "sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4",
738
+ "sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c",
739
+ "sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34",
740
+ "sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b",
741
+ "sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c",
742
+ "sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb",
743
+ "sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737",
744
+ "sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3",
745
+ "sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d",
746
+ "sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53",
747
+ "sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78",
748
+ "sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803",
749
+ "sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a",
750
+ "sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174",
751
+ "sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"
752
+ ],
753
+ "index": "pypi",
754
+ "version": "==6.0"
755
+ },
756
+ "requests": {
757
+ "hashes": [
758
+ "sha256:7c5599b102feddaa661c826c56ab4fee28bfd17f5abca1ebbe3e7f19d7c97983",
759
+ "sha256:8fefa2a1a1365bf5520aac41836fbee479da67864514bdb821f31ce07ce65349"
760
+ ],
761
+ "index": "pypi",
762
+ "version": "==2.28.1"
763
+ },
764
+ "requests-oauthlib": {
765
+ "hashes": [
766
+ "sha256:2577c501a2fb8d05a304c09d090d6e47c306fef15809d102b327cf8364bddab5",
767
+ "sha256:75beac4a47881eeb94d5ea5d6ad31ef88856affe2332b9aafb52c6452ccf0d7a"
768
+ ],
769
+ "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
770
+ "version": "==1.3.1"
771
+ },
772
+ "rsa": {
773
+ "hashes": [
774
+ "sha256:90260d9058e514786967344d0ef75fa8727eed8a7d2e43ce9f4bcf1b536174f7",
775
+ "sha256:e38464a49c6c85d7f1351b0126661487a7e0a14a50f1675ec50eb34d4f20ef21"
776
+ ],
777
+ "markers": "python_version >= '3.6'",
778
+ "version": "==4.9"
779
+ },
780
+ "scipy": {
781
+ "hashes": [
782
+ "sha256:0419485dbcd0ed78c0d5bf234c5dd63e86065b39b4d669e45810d42199d49521",
783
+ "sha256:09412eb7fb60b8f00b328037fd814d25d261066ebc43a1e339cdce4f7502877e",
784
+ "sha256:26d28c468900e6d5fdb37d2812ab46db0ccd22c63baa095057871faa3a498bc9",
785
+ "sha256:34441dfbee5b002f9e15285014fd56e5e3372493c3e64ae297bae2c4b9659f5a",
786
+ "sha256:39ab9240cd215a9349c85ab908dda6d732f7d3b4b192fa05780812495536acc4",
787
+ "sha256:3bc1ab68b9a096f368ba06c3a5e1d1d50957a86665fc929c4332d21355e7e8f4",
788
+ "sha256:3c6f5d1d4b9a5e4fe5e14f26ffc9444fc59473bbf8d45dc4a9a15283b7063a72",
789
+ "sha256:47d1a95bd9d37302afcfe1b84c8011377c4f81e33649c5a5785db9ab827a6ade",
790
+ "sha256:71487c503e036740635f18324f62a11f283a632ace9d35933b2b0a04fd898c98",
791
+ "sha256:7a412c476a91b080e456229e413792bbb5d6202865dae963d1e6e28c2bb58691",
792
+ "sha256:825951b88f56765aeb6e5e38ac9d7d47407cfaaeb008d40aa1b45a2d7ea2731e",
793
+ "sha256:8cc81ac25659fec73599ccc52c989670e5ccd8974cf34bacd7b54a8d809aff1a",
794
+ "sha256:8d3faa40ac16c6357aaf7ea50394ea6f1e8e99d75e927a51102b1943b311b4d9",
795
+ "sha256:90c805f30c46cf60f1e76e947574f02954d25e3bb1e97aa8a07bc53aa31cf7d1",
796
+ "sha256:96d7cf7b25c9f23c59a766385f6370dab0659741699ecc7a451f9b94604938ce",
797
+ "sha256:b97b479f39c7e4aaf807efd0424dec74bbb379108f7d22cf09323086afcd312c",
798
+ "sha256:bc4e2c77d4cd015d739e75e74ebbafed59ba8497a7ed0fd400231ed7683497c4",
799
+ "sha256:c61b4a91a702e8e04aeb0bfc40460e1f17a640977c04dda8757efb0199c75332",
800
+ "sha256:d79da472015d0120ba9b357b28a99146cd6c17b9609403164b1a8ed149b4dfc8",
801
+ "sha256:e8fe305d9d67a81255e06203454729405706907dccbdfcc330b7b3482a6c371d",
802
+ "sha256:eb954f5aca4d26f468bbebcdc5448348eb287f7bea536c6306f62ea062f63d9a",
803
+ "sha256:f7c39f7dbb57cce00c108d06d731f3b0e2a4d3a95c66d96bce697684876ce4d4",
804
+ "sha256:f950a04b33e17b38ff561d5a0951caf3f5b47caa841edd772ffb7959f20a6af0"
805
+ ],
806
+ "index": "pypi",
807
+ "version": "==1.9.1"
808
+ },
809
+ "seaborn": {
810
+ "hashes": [
811
+ "sha256:85a6baa9b55f81a0623abddc4a26b334653ff4c6b18c418361de19dbba0ef283",
812
+ "sha256:cf45e9286d40826864be0e3c066f98536982baf701a7caa386511792d61ff4f6"
813
+ ],
814
+ "index": "pypi",
815
+ "version": "==0.11.2"
816
+ },
817
+ "setuptools": {
818
+ "hashes": [
819
+ "sha256:2e24e0bec025f035a2e72cdd1961119f557d78ad331bb00ff82efb2ab8da8e82",
820
+ "sha256:7732871f4f7fa58fb6bdcaeadb0161b2bd046c85905dbaa066bdcbcc81953b57"
821
+ ],
822
+ "markers": "python_version >= '3.7'",
823
+ "version": "==65.3.0"
824
+ },
825
+ "six": {
826
+ "hashes": [
827
+ "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926",
828
+ "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"
829
+ ],
830
+ "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2'",
831
+ "version": "==1.16.0"
832
+ },
833
+ "stack-data": {
834
+ "hashes": [
835
+ "sha256:66d2ebd3d7f29047612ead465b6cae5371006a71f45037c7e2507d01367bce3b",
836
+ "sha256:715c8855fbf5c43587b141e46cc9d9339cc0d1f8d6e0f98ed0d01c6cb974e29f"
837
+ ],
838
+ "version": "==0.5.0"
839
+ },
840
+ "tensorboard": {
841
+ "hashes": [
842
+ "sha256:76c91a5e8959cd2208cc32cb17a0cb002badabb66a06ac2af02a7810f49a59e3"
843
+ ],
844
+ "index": "pypi",
845
+ "version": "==2.10.0"
846
+ },
847
+ "tensorboard-data-server": {
848
+ "hashes": [
849
+ "sha256:809fe9887682d35c1f7d1f54f0f40f98bb1f771b14265b453ca051e2ce58fca7",
850
+ "sha256:d8237580755e58eff68d1f3abefb5b1e39ae5c8b127cc40920f9c4fb33f4b98a",
851
+ "sha256:fa8cef9be4fcae2f2363c88176638baf2da19c5ec90addb49b1cde05c95c88ee"
852
+ ],
853
+ "markers": "python_version >= '3.6'",
854
+ "version": "==0.6.1"
855
+ },
856
+ "tensorboard-plugin-wit": {
857
+ "hashes": [
858
+ "sha256:ff26bdd583d155aa951ee3b152b3d0cffae8005dc697f72b44a8e8c2a77a8cbe"
859
+ ],
860
+ "version": "==1.8.1"
861
+ },
862
+ "thop": {
863
+ "hashes": [
864
+ "sha256:13517320470e751ba56b59788c902f189640e83b9f0a46f5736c9a928dd4e280"
865
+ ],
866
+ "index": "pypi",
867
+ "version": "==0.1.1.post2207130030"
868
+ },
869
+ "torch": {
870
+ "hashes": [
871
+ "sha256:03e31c37711db2cd201e02de5826de875529e45a55631d317aadce2f1ed45aa8",
872
+ "sha256:0b44601ec56f7dd44ad8afc00846051162ef9c26a8579dda0a02194327f2d55e",
873
+ "sha256:42e115dab26f60c29e298559dbec88444175528b729ae994ec4c65d56fe267dd",
874
+ "sha256:42f639501928caabb9d1d55ddd17f07cd694de146686c24489ab8c615c2871f2",
875
+ "sha256:4e1b9c14cf13fd2ab8d769529050629a0e68a6fc5cb8e84b4a3cc1dd8c4fe541",
876
+ "sha256:68104e4715a55c4bb29a85c6a8d57d820e0757da363be1ba680fa8cc5be17b52",
877
+ "sha256:69fe2cae7c39ccadd65a123793d30e0db881f1c1927945519c5c17323131437e",
878
+ "sha256:6cf6f54b43c0c30335428195589bd00e764a6d27f3b9ba637aaa8c11aaf93073",
879
+ "sha256:743784ccea0dc8f2a3fe6a536bec8c4763bd82c1352f314937cb4008d4805de1",
880
+ "sha256:8a34a2fbbaa07c921e1b203f59d3d6e00ed379f2b384445773bd14e328a5b6c8",
881
+ "sha256:976c3f997cea38ee91a0dd3c3a42322785414748d1761ef926b789dfa97c6134",
882
+ "sha256:9b356aea223772cd754edb4d9ecf2a025909b8615a7668ac7d5130f86e7ec421",
883
+ "sha256:9c038662db894a23e49e385df13d47b2a777ffd56d9bcd5b832593fab0a7e286",
884
+ "sha256:a8320ba9ad87e80ca5a6a016e46ada4d1ba0c54626e135d99b2129a4541c509d",
885
+ "sha256:b5dbcca369800ce99ba7ae6dee3466607a66958afca3b740690d88168752abcf",
886
+ "sha256:bfec2843daa654f04fda23ba823af03e7b6f7650a873cdb726752d0e3718dada",
887
+ "sha256:cd26d8c5640c3a28c526d41ccdca14cf1cbca0d0f2e14e8263a7ac17194ab1d2",
888
+ "sha256:e9c8f4a311ac29fc7e8e955cfb7733deb5dbe1bdaabf5d4af2765695824b7e0d",
889
+ "sha256:f00c721f489089dc6364a01fd84906348fe02243d0af737f944fddb36003400d",
890
+ "sha256:f3b52a634e62821e747e872084ab32fbcb01b7fa7dbb7471b6218279f02a178a"
891
+ ],
892
+ "index": "pypi",
893
+ "version": "==1.12.1"
894
+ },
895
+ "torchvision": {
896
+ "hashes": [
897
+ "sha256:0298bae3b09ac361866088434008d82b99d6458fe8888c8df90720ef4b347d44",
898
+ "sha256:08f592ea61836ebeceb5c97f4d7a813b9d7dc651bbf7ce4401563ccfae6a21fc",
899
+ "sha256:099874088df104d54d8008f2a28539ca0117b512daed8bf3c2bbfa2b7ccb187a",
900
+ "sha256:0e77706cc90462653620e336bb90daf03d7bf1b88c3a9a3037df8d111823a56e",
901
+ "sha256:19286a733c69dcbd417b86793df807bd227db5786ed787c17297741a9b0d0fc7",
902
+ "sha256:3567fb3def829229ec217c1e38f08c5128ff7fb65854cac17ebac358ff7aa309",
903
+ "sha256:4d8bf321c4380854ef04613935fdd415dce29d1088a7ff99e06e113f0efe9203",
904
+ "sha256:5e631241bee3661de64f83616656224af2e3512eb2580da7c08e08b8c965a8ac",
905
+ "sha256:7552e80fa222252b8b217a951c85e172a710ea4cad0ae0c06fbb67addece7871",
906
+ "sha256:7cb789ceefe6dcd0dc8eeda37bfc45efb7cf34770eac9533861d51ca508eb5b3",
907
+ "sha256:83e9e2457f23110fd53b0177e1bc621518d6ea2108f570e853b768ce36b7c679",
908
+ "sha256:87c137f343197769a51333076e66bfcd576301d2cd8614b06657187c71b06c4f",
909
+ "sha256:899eec0b9f3b99b96d6f85b9aa58c002db41c672437677b553015b9135b3be7e",
910
+ "sha256:8e4d02e4d8a203e0c09c10dfb478214c224d080d31efc0dbf36d9c4051f7f3c6",
911
+ "sha256:b167934a5943242da7b1e59318f911d2d253feeca0d13ad5d832b58eed943401",
912
+ "sha256:c5ed609c8bc88c575226400b2232e0309094477c82af38952e0373edef0003fd",
913
+ "sha256:e9a563894f9fa40692e24d1aa58c3ef040450017cfed3598ff9637f404f3fe3b",
914
+ "sha256:ef5fe3ec1848123cd0ec74c07658192b3147dcd38e507308c790d5943e87b88c",
915
+ "sha256:f230a1a40ed70d51e463ce43df243ec520902f8725de2502e485efc5eea9d864"
916
+ ],
917
+ "index": "pypi",
918
+ "version": "==0.13.1"
919
+ },
920
+ "tqdm": {
921
+ "hashes": [
922
+ "sha256:40be55d30e200777a307a7585aee69e4eabb46b4ec6a4b4a5f2d9f11e7d5408d",
923
+ "sha256:74a2cdefe14d11442cedf3ba4e21a3b84ff9a2dbdc6cfae2c34addb2a14a5ea6"
924
+ ],
925
+ "index": "pypi",
926
+ "version": "==4.64.0"
927
+ },
928
+ "traitlets": {
929
+ "hashes": [
930
+ "sha256:0bb9f1f9f017aa8ec187d8b1b2a7a6626a2a1d877116baba52a129bfa124f8e2",
931
+ "sha256:65fa18961659635933100db8ca120ef6220555286949774b9cfc106f941d1c7a"
932
+ ],
933
+ "markers": "python_version >= '3.7'",
934
+ "version": "==5.3.0"
935
+ },
936
+ "typing-extensions": {
937
+ "hashes": [
938
+ "sha256:25642c956049920a5aa49edcdd6ab1e06d7e5d467fc00e0506c44ac86fbfca02",
939
+ "sha256:e6d2677a32f47fc7eb2795db1dd15c1f34eff616bcaf2cfb5e997f854fa1c4a6"
940
+ ],
941
+ "markers": "python_version >= '3.7'",
942
+ "version": "==4.3.0"
943
+ },
944
+ "urllib3": {
945
+ "hashes": [
946
+ "sha256:3fa96cf423e6987997fc326ae8df396db2a8b7c667747d47ddd8ecba91f4a74e",
947
+ "sha256:b930dd878d5a8afb066a637fbb35144fe7901e3b209d1cd4f524bd0e9deee997"
948
+ ],
949
+ "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4, 3.5' and python_version < '4'",
950
+ "version": "==1.26.12"
951
+ },
952
+ "wcwidth": {
953
+ "hashes": [
954
+ "sha256:beb4802a9cebb9144e99086eff703a642a13d6a0052920003a230f3294bbe784",
955
+ "sha256:c4d647b99872929fdb7bdcaa4fbe7f01413ed3d98077df798530e5b04f116c83"
956
+ ],
957
+ "version": "==0.2.5"
958
+ },
959
+ "werkzeug": {
960
+ "hashes": [
961
+ "sha256:7ea2d48322cc7c0f8b3a215ed73eabd7b5d75d0b50e31ab006286ccff9e00b8f",
962
+ "sha256:f979ab81f58d7318e064e99c4506445d60135ac5cd2e177a2de0089bfd4c9bd5"
963
+ ],
964
+ "markers": "python_version >= '3.7'",
965
+ "version": "==2.2.2"
966
+ },
967
+ "wheel": {
968
+ "hashes": [
969
+ "sha256:4bdcd7d840138086126cd09254dc6195fb4fc6f01c050a1d7236f2630db1d22a",
970
+ "sha256:e9a504e793efbca1b8e0e9cb979a249cf4a0a7b5b8c9e8b65a5e39d49529c1c4"
971
+ ],
972
+ "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'",
973
+ "version": "==0.37.1"
974
+ },
975
+ "zipp": {
976
+ "hashes": [
977
+ "sha256:05b45f1ee8f807d0cc928485ca40a07cb491cf092ff587c0df9cb1fd154848d2",
978
+ "sha256:47c40d7fe183a6f21403a199b3e4192cca5774656965b0a4988ad2f8feb5f009"
979
+ ],
980
+ "markers": "python_version >= '3.7'",
981
+ "version": "==3.8.1"
982
+ }
983
+ },
984
+ "develop": {}
985
+ }
README.md → detection/README.md RENAMED
@@ -1,8 +1,8 @@
1
  ---
2
- title: BIB Number Recognition
3
- emoji: 📉
4
- colorFrom: indigo
5
- colorTo: green
6
  sdk: gradio
7
  sdk_version: 3.1.7
8
  app_file: app.py
 
1
  ---
2
+ title: BIB Number Detection
3
+ emoji: 🚀
4
+ colorFrom: pink
5
+ colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 3.1.7
8
  app_file: app.py
detection/app.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt")
3
+ os.system("wget https://gitlab.com/annasblackhat/bib-weight/-/raw/main/bib-best.pt")
4
+ os.system("wget https://gitlab.com/annasblackhat/bib-weight/-/raw/main/bib-best-v2.pt")
5
+ os.mkdir('Inference')
6
+
7
+ import gradio as gr
8
+ import argparse
9
+ import time
10
+ from pathlib import Path
11
+
12
+ import cv2
13
+ import torch
14
+ import torch.backends.cudnn as cudnn
15
+ from numpy import random
16
+
17
+ from models.experimental import attempt_load
18
+ from utils.datasets import LoadStreams, LoadImages
19
+ from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
20
+ scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
21
+ from utils.plots import plot_one_box
22
+ from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
23
+ from PIL import Image
24
+
25
+ weights_paths = {'V1': 'bib-best.pt', 'V2': 'bib-best-v2.pt'}
26
+
27
+ def detect(img, weight = "V2"):
28
+ print('weight: ', weight)
29
+ parser = argparse.ArgumentParser()
30
+ parser.add_argument('--weights', nargs='+', type=str, default=weights_paths[weight], help='model.pt path(s)')
31
+ parser.add_argument('--source', type=str, default='Inference/', help='source') # file/folder, 0 for webcam
32
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
33
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
34
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
35
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
36
+ parser.add_argument('--view-img', action='store_true', help='display results')
37
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
38
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
39
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
40
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
41
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
42
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
43
+ parser.add_argument('--update', action='store_true', help='update all models')
44
+ parser.add_argument('--project', default='runs/detect', help='save results to project/name')
45
+ parser.add_argument('--name', default='exp', help='save results to project/name')
46
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
47
+ parser.add_argument('--trace', action='store_true', help='trace model')
48
+ opt = parser.parse_args()
49
+ print(opt)
50
+ img.save("Inference/test.jpg")
51
+ source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
52
+ save_img = True # save inference images
53
+ webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
54
+ ('rtsp://', 'rtmp://', 'http://', 'https://'))
55
+
56
+ # Directories
57
+ save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
58
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
59
+
60
+ # Initialize
61
+ set_logging()
62
+ device = select_device(opt.device)
63
+ half = device.type != 'cpu' # half precision only supported on CUDA
64
+
65
+ # Load model
66
+ model = attempt_load(weights, map_location=device) # load FP32 model
67
+ stride = int(model.stride.max()) # model stride
68
+ imgsz = check_img_size(imgsz, s=stride) # check img_size
69
+
70
+ if trace:
71
+ model = TracedModel(model, device, opt.img_size)
72
+
73
+ if half:
74
+ model.half() # to FP16
75
+
76
+ # Second-stage classifier
77
+ classify = False
78
+ if classify:
79
+ modelc = load_classifier(name='resnet101', n=2) # initialize
80
+ modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
81
+
82
+ # Set Dataloader
83
+ vid_path, vid_writer = None, None
84
+ if webcam:
85
+ view_img = check_imshow()
86
+ cudnn.benchmark = True # set True to speed up constant image size inference
87
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride)
88
+ else:
89
+ dataset = LoadImages(source, img_size=imgsz, stride=stride)
90
+
91
+ # Get names and colors
92
+ names = model.module.names if hasattr(model, 'module') else model.names
93
+ colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
94
+
95
+ # Run inference
96
+ if device.type != 'cpu':
97
+ model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
98
+ t0 = time.time()
99
+ xyxy_pred = []
100
+ for path, img, im0s, vid_cap in dataset:
101
+ img = torch.from_numpy(img).to(device)
102
+ img = img.half() if half else img.float() # uint8 to fp16/32
103
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
104
+ if img.ndimension() == 3:
105
+ img = img.unsqueeze(0)
106
+
107
+ # Inference
108
+ t1 = time_synchronized()
109
+ pred = model(img, augment=opt.augment)[0]
110
+
111
+ # Apply NMS
112
+ pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
113
+ t2 = time_synchronized()
114
+
115
+ # Apply Classifier
116
+ if classify:
117
+ pred = apply_classifier(pred, modelc, img, im0s)
118
+
119
+ # Process detections
120
+ for i, det in enumerate(pred): # detections per image
121
+ if webcam: # batch_size >= 1
122
+ p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
123
+ else:
124
+ p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
125
+
126
+ p = Path(p) # to Path
127
+ save_path = str(save_dir / p.name) # img.jpg
128
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
129
+ s += '%gx%g ' % img.shape[2:] # print string
130
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
131
+ if len(det):
132
+ # Rescale boxes from img_size to im0 size
133
+ det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
134
+
135
+ # Print results
136
+ for c in det[:, -1].unique():
137
+ n = (det[:, -1] == c).sum() # detections per class
138
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
139
+
140
+ # Write results
141
+ for *xyxy, conf, cls in reversed(det):
142
+ x1, y1, x2, y2 = int(xyxy[0]), int(xyxy[1]), int(xyxy[2]), int(xyxy[3])
143
+ xyxy_pred.append({'x1': x1, 'y1': y1, 'x2': x2, 'y2': y2})
144
+ if save_txt: # Write to file
145
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
146
+ line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
147
+ with open(txt_path + '.txt', 'a') as f:
148
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
149
+
150
+ if save_img or view_img: # Add bbox to image
151
+ label = f'{names[int(cls)]} {conf:.2f}'
152
+ plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
153
+ print('---xyxy: ', xyxy)
154
+
155
+
156
+ # Print time (inference + NMS)
157
+ #print(f'{s}Done. ({t2 - t1:.3f}s)')
158
+
159
+ # Stream results
160
+ if view_img:
161
+ cv2.imshow(str(p), im0)
162
+ cv2.waitKey(1) # 1 millisecond
163
+
164
+ # Save results (image with detections)
165
+ if save_img:
166
+ if dataset.mode == 'image':
167
+ cv2.imwrite(save_path, im0)
168
+ else: # 'video' or 'stream'
169
+ if vid_path != save_path: # new video
170
+ vid_path = save_path
171
+ if isinstance(vid_writer, cv2.VideoWriter):
172
+ vid_writer.release() # release previous video writer
173
+ if vid_cap: # video
174
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
175
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
176
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
177
+ else: # stream
178
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
179
+ save_path += '.mp4'
180
+ vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
181
+ vid_writer.write(im0)
182
+
183
+ print(f'Done. ({time.time() - t0:.3f}s)')
184
+
185
+ return Image.fromarray(im0[:,:,::-1]), xyxy_pred
186
+
187
+
188
+
189
+ iface = gr.Interface(fn=detect, inputs=[gr.Image(type="pil"), gr.Dropdown(['V1', 'V2'], label='Weight', value='V2')], outputs=[gr.Image(type='pil'), 'json'], description='BIB Race Number Detection')
190
+ iface.launch()
detection/cfg/.DS_Store ADDED
Binary file (6.15 kB). View file
 
detection/cfg/baseline/r50-csp.yaml ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # CSP-ResNet backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Stem, [128]], # 0-P1/2
16
+ [-1, 3, ResCSPC, [128]],
17
+ [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
18
+ [-1, 4, ResCSPC, [256]],
19
+ [-1, 1, Conv, [512, 3, 2]], # 4-P3/8
20
+ [-1, 6, ResCSPC, [512]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 6-P3/8
22
+ [-1, 3, ResCSPC, [1024]], # 7
23
+ ]
24
+
25
+ # CSP-Res-PAN head
26
+ head:
27
+ [[-1, 1, SPPCSPC, [512]], # 8
28
+ [-1, 1, Conv, [256, 1, 1]],
29
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30
+ [5, 1, Conv, [256, 1, 1]], # route backbone P4
31
+ [[-1, -2], 1, Concat, [1]],
32
+ [-1, 2, ResCSPB, [256]], # 13
33
+ [-1, 1, Conv, [128, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [3, 1, Conv, [128, 1, 1]], # route backbone P3
36
+ [[-1, -2], 1, Concat, [1]],
37
+ [-1, 2, ResCSPB, [128]], # 18
38
+ [-1, 1, Conv, [256, 3, 1]],
39
+ [-2, 1, Conv, [256, 3, 2]],
40
+ [[-1, 13], 1, Concat, [1]], # cat
41
+ [-1, 2, ResCSPB, [256]], # 22
42
+ [-1, 1, Conv, [512, 3, 1]],
43
+ [-2, 1, Conv, [512, 3, 2]],
44
+ [[-1, 8], 1, Concat, [1]], # cat
45
+ [-1, 2, ResCSPB, [512]], # 26
46
+ [-1, 1, Conv, [1024, 3, 1]],
47
+
48
+ [[19,23,27], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
49
+ ]
detection/cfg/baseline/x50-csp.yaml ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # CSP-ResNeXt backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Stem, [128]], # 0-P1/2
16
+ [-1, 3, ResXCSPC, [128]],
17
+ [-1, 1, Conv, [256, 3, 2]], # 2-P3/8
18
+ [-1, 4, ResXCSPC, [256]],
19
+ [-1, 1, Conv, [512, 3, 2]], # 4-P3/8
20
+ [-1, 6, ResXCSPC, [512]],
21
+ [-1, 1, Conv, [1024, 3, 2]], # 6-P3/8
22
+ [-1, 3, ResXCSPC, [1024]], # 7
23
+ ]
24
+
25
+ # CSP-ResX-PAN head
26
+ head:
27
+ [[-1, 1, SPPCSPC, [512]], # 8
28
+ [-1, 1, Conv, [256, 1, 1]],
29
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
30
+ [5, 1, Conv, [256, 1, 1]], # route backbone P4
31
+ [[-1, -2], 1, Concat, [1]],
32
+ [-1, 2, ResXCSPB, [256]], # 13
33
+ [-1, 1, Conv, [128, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [3, 1, Conv, [128, 1, 1]], # route backbone P3
36
+ [[-1, -2], 1, Concat, [1]],
37
+ [-1, 2, ResXCSPB, [128]], # 18
38
+ [-1, 1, Conv, [256, 3, 1]],
39
+ [-2, 1, Conv, [256, 3, 2]],
40
+ [[-1, 13], 1, Concat, [1]], # cat
41
+ [-1, 2, ResXCSPB, [256]], # 22
42
+ [-1, 1, Conv, [512, 3, 1]],
43
+ [-2, 1, Conv, [512, 3, 2]],
44
+ [[-1, 8], 1, Concat, [1]], # cat
45
+ [-1, 2, ResXCSPB, [512]], # 26
46
+ [-1, 1, Conv, [1024, 3, 1]],
47
+
48
+ [[19,23,27], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
49
+ ]
detection/cfg/baseline/yolor-csp-x.yaml ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.33 # model depth multiple
4
+ width_multiple: 1.25 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # CSP-Darknet backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, BottleneckCSPC, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, BottleneckCSPC, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, BottleneckCSPC, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, BottleneckCSPC, [1024]], # 10
26
+ ]
27
+
28
+ # CSP-Dark-PAN head
29
+ head:
30
+ [[-1, 1, SPPCSPC, [512]], # 11
31
+ [-1, 1, Conv, [256, 1, 1]],
32
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
+ [8, 1, Conv, [256, 1, 1]], # route backbone P4
34
+ [[-1, -2], 1, Concat, [1]],
35
+ [-1, 2, BottleneckCSPB, [256]], # 16
36
+ [-1, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [6, 1, Conv, [128, 1, 1]], # route backbone P3
39
+ [[-1, -2], 1, Concat, [1]],
40
+ [-1, 2, BottleneckCSPB, [128]], # 21
41
+ [-1, 1, Conv, [256, 3, 1]],
42
+ [-2, 1, Conv, [256, 3, 2]],
43
+ [[-1, 16], 1, Concat, [1]], # cat
44
+ [-1, 2, BottleneckCSPB, [256]], # 25
45
+ [-1, 1, Conv, [512, 3, 1]],
46
+ [-2, 1, Conv, [512, 3, 2]],
47
+ [[-1, 11], 1, Concat, [1]], # cat
48
+ [-1, 2, BottleneckCSPB, [512]], # 29
49
+ [-1, 1, Conv, [1024, 3, 1]],
50
+
51
+ [[22,26,30], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
52
+ ]
detection/cfg/baseline/yolor-csp.yaml ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # CSP-Darknet backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, BottleneckCSPC, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, BottleneckCSPC, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, BottleneckCSPC, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, BottleneckCSPC, [1024]], # 10
26
+ ]
27
+
28
+ # CSP-Dark-PAN head
29
+ head:
30
+ [[-1, 1, SPPCSPC, [512]], # 11
31
+ [-1, 1, Conv, [256, 1, 1]],
32
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
+ [8, 1, Conv, [256, 1, 1]], # route backbone P4
34
+ [[-1, -2], 1, Concat, [1]],
35
+ [-1, 2, BottleneckCSPB, [256]], # 16
36
+ [-1, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [6, 1, Conv, [128, 1, 1]], # route backbone P3
39
+ [[-1, -2], 1, Concat, [1]],
40
+ [-1, 2, BottleneckCSPB, [128]], # 21
41
+ [-1, 1, Conv, [256, 3, 1]],
42
+ [-2, 1, Conv, [256, 3, 2]],
43
+ [[-1, 16], 1, Concat, [1]], # cat
44
+ [-1, 2, BottleneckCSPB, [256]], # 25
45
+ [-1, 1, Conv, [512, 3, 1]],
46
+ [-2, 1, Conv, [512, 3, 2]],
47
+ [[-1, 11], 1, Concat, [1]], # cat
48
+ [-1, 2, BottleneckCSPB, [512]], # 29
49
+ [-1, 1, Conv, [1024, 3, 1]],
50
+
51
+ [[22,26,30], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
52
+ ]
detection/cfg/baseline/yolor-d6.yaml ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # expand model depth
4
+ width_multiple: 1.25 # expand layer channels
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # CSP-Darknet backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18
+ [-1, 1, DownC, [128]], # 2-P2/4
19
+ [-1, 3, BottleneckCSPA, [128]],
20
+ [-1, 1, DownC, [256]], # 4-P3/8
21
+ [-1, 15, BottleneckCSPA, [256]],
22
+ [-1, 1, DownC, [512]], # 6-P4/16
23
+ [-1, 15, BottleneckCSPA, [512]],
24
+ [-1, 1, DownC, [768]], # 8-P5/32
25
+ [-1, 7, BottleneckCSPA, [768]],
26
+ [-1, 1, DownC, [1024]], # 10-P6/64
27
+ [-1, 7, BottleneckCSPA, [1024]], # 11
28
+ ]
29
+
30
+ # CSP-Dark-PAN head
31
+ head:
32
+ [[-1, 1, SPPCSPC, [512]], # 12
33
+ [-1, 1, Conv, [384, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [-6, 1, Conv, [384, 1, 1]], # route backbone P5
36
+ [[-1, -2], 1, Concat, [1]],
37
+ [-1, 3, BottleneckCSPB, [384]], # 17
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40
+ [-13, 1, Conv, [256, 1, 1]], # route backbone P4
41
+ [[-1, -2], 1, Concat, [1]],
42
+ [-1, 3, BottleneckCSPB, [256]], # 22
43
+ [-1, 1, Conv, [128, 1, 1]],
44
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
45
+ [-20, 1, Conv, [128, 1, 1]], # route backbone P3
46
+ [[-1, -2], 1, Concat, [1]],
47
+ [-1, 3, BottleneckCSPB, [128]], # 27
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-2, 1, DownC, [256]],
50
+ [[-1, 22], 1, Concat, [1]], # cat
51
+ [-1, 3, BottleneckCSPB, [256]], # 31
52
+ [-1, 1, Conv, [512, 3, 1]],
53
+ [-2, 1, DownC, [384]],
54
+ [[-1, 17], 1, Concat, [1]], # cat
55
+ [-1, 3, BottleneckCSPB, [384]], # 35
56
+ [-1, 1, Conv, [768, 3, 1]],
57
+ [-2, 1, DownC, [512]],
58
+ [[-1, 12], 1, Concat, [1]], # cat
59
+ [-1, 3, BottleneckCSPB, [512]], # 39
60
+ [-1, 1, Conv, [1024, 3, 1]],
61
+
62
+ [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
63
+ ]
detection/cfg/baseline/yolor-e6.yaml ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # expand model depth
4
+ width_multiple: 1.25 # expand layer channels
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # CSP-Darknet backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18
+ [-1, 1, DownC, [128]], # 2-P2/4
19
+ [-1, 3, BottleneckCSPA, [128]],
20
+ [-1, 1, DownC, [256]], # 4-P3/8
21
+ [-1, 7, BottleneckCSPA, [256]],
22
+ [-1, 1, DownC, [512]], # 6-P4/16
23
+ [-1, 7, BottleneckCSPA, [512]],
24
+ [-1, 1, DownC, [768]], # 8-P5/32
25
+ [-1, 3, BottleneckCSPA, [768]],
26
+ [-1, 1, DownC, [1024]], # 10-P6/64
27
+ [-1, 3, BottleneckCSPA, [1024]], # 11
28
+ ]
29
+
30
+ # CSP-Dark-PAN head
31
+ head:
32
+ [[-1, 1, SPPCSPC, [512]], # 12
33
+ [-1, 1, Conv, [384, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [-6, 1, Conv, [384, 1, 1]], # route backbone P5
36
+ [[-1, -2], 1, Concat, [1]],
37
+ [-1, 3, BottleneckCSPB, [384]], # 17
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40
+ [-13, 1, Conv, [256, 1, 1]], # route backbone P4
41
+ [[-1, -2], 1, Concat, [1]],
42
+ [-1, 3, BottleneckCSPB, [256]], # 22
43
+ [-1, 1, Conv, [128, 1, 1]],
44
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
45
+ [-20, 1, Conv, [128, 1, 1]], # route backbone P3
46
+ [[-1, -2], 1, Concat, [1]],
47
+ [-1, 3, BottleneckCSPB, [128]], # 27
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-2, 1, DownC, [256]],
50
+ [[-1, 22], 1, Concat, [1]], # cat
51
+ [-1, 3, BottleneckCSPB, [256]], # 31
52
+ [-1, 1, Conv, [512, 3, 1]],
53
+ [-2, 1, DownC, [384]],
54
+ [[-1, 17], 1, Concat, [1]], # cat
55
+ [-1, 3, BottleneckCSPB, [384]], # 35
56
+ [-1, 1, Conv, [768, 3, 1]],
57
+ [-2, 1, DownC, [512]],
58
+ [[-1, 12], 1, Concat, [1]], # cat
59
+ [-1, 3, BottleneckCSPB, [512]], # 39
60
+ [-1, 1, Conv, [1024, 3, 1]],
61
+
62
+ [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
63
+ ]
detection/cfg/baseline/yolor-p6.yaml ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # expand model depth
4
+ width_multiple: 1.0 # expand layer channels
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # CSP-Darknet backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
19
+ [-1, 3, BottleneckCSPA, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
21
+ [-1, 7, BottleneckCSPA, [256]],
22
+ [-1, 1, Conv, [384, 3, 2]], # 6-P4/16
23
+ [-1, 7, BottleneckCSPA, [384]],
24
+ [-1, 1, Conv, [512, 3, 2]], # 8-P5/32
25
+ [-1, 3, BottleneckCSPA, [512]],
26
+ [-1, 1, Conv, [640, 3, 2]], # 10-P6/64
27
+ [-1, 3, BottleneckCSPA, [640]], # 11
28
+ ]
29
+
30
+ # CSP-Dark-PAN head
31
+ head:
32
+ [[-1, 1, SPPCSPC, [320]], # 12
33
+ [-1, 1, Conv, [256, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [-6, 1, Conv, [256, 1, 1]], # route backbone P5
36
+ [[-1, -2], 1, Concat, [1]],
37
+ [-1, 3, BottleneckCSPB, [256]], # 17
38
+ [-1, 1, Conv, [192, 1, 1]],
39
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40
+ [-13, 1, Conv, [192, 1, 1]], # route backbone P4
41
+ [[-1, -2], 1, Concat, [1]],
42
+ [-1, 3, BottleneckCSPB, [192]], # 22
43
+ [-1, 1, Conv, [128, 1, 1]],
44
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
45
+ [-20, 1, Conv, [128, 1, 1]], # route backbone P3
46
+ [[-1, -2], 1, Concat, [1]],
47
+ [-1, 3, BottleneckCSPB, [128]], # 27
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-2, 1, Conv, [192, 3, 2]],
50
+ [[-1, 22], 1, Concat, [1]], # cat
51
+ [-1, 3, BottleneckCSPB, [192]], # 31
52
+ [-1, 1, Conv, [384, 3, 1]],
53
+ [-2, 1, Conv, [256, 3, 2]],
54
+ [[-1, 17], 1, Concat, [1]], # cat
55
+ [-1, 3, BottleneckCSPB, [256]], # 35
56
+ [-1, 1, Conv, [512, 3, 1]],
57
+ [-2, 1, Conv, [320, 3, 2]],
58
+ [[-1, 12], 1, Concat, [1]], # cat
59
+ [-1, 3, BottleneckCSPB, [320]], # 39
60
+ [-1, 1, Conv, [640, 3, 1]],
61
+
62
+ [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
63
+ ]
detection/cfg/baseline/yolor-w6.yaml ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # expand model depth
4
+ width_multiple: 1.0 # expand layer channels
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # CSP-Darknet backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
19
+ [-1, 3, BottleneckCSPA, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 4-P3/8
21
+ [-1, 7, BottleneckCSPA, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 6-P4/16
23
+ [-1, 7, BottleneckCSPA, [512]],
24
+ [-1, 1, Conv, [768, 3, 2]], # 8-P5/32
25
+ [-1, 3, BottleneckCSPA, [768]],
26
+ [-1, 1, Conv, [1024, 3, 2]], # 10-P6/64
27
+ [-1, 3, BottleneckCSPA, [1024]], # 11
28
+ ]
29
+
30
+ # CSP-Dark-PAN head
31
+ head:
32
+ [[-1, 1, SPPCSPC, [512]], # 12
33
+ [-1, 1, Conv, [384, 1, 1]],
34
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
35
+ [-6, 1, Conv, [384, 1, 1]], # route backbone P5
36
+ [[-1, -2], 1, Concat, [1]],
37
+ [-1, 3, BottleneckCSPB, [384]], # 17
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
40
+ [-13, 1, Conv, [256, 1, 1]], # route backbone P4
41
+ [[-1, -2], 1, Concat, [1]],
42
+ [-1, 3, BottleneckCSPB, [256]], # 22
43
+ [-1, 1, Conv, [128, 1, 1]],
44
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
45
+ [-20, 1, Conv, [128, 1, 1]], # route backbone P3
46
+ [[-1, -2], 1, Concat, [1]],
47
+ [-1, 3, BottleneckCSPB, [128]], # 27
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-2, 1, Conv, [256, 3, 2]],
50
+ [[-1, 22], 1, Concat, [1]], # cat
51
+ [-1, 3, BottleneckCSPB, [256]], # 31
52
+ [-1, 1, Conv, [512, 3, 1]],
53
+ [-2, 1, Conv, [384, 3, 2]],
54
+ [[-1, 17], 1, Concat, [1]], # cat
55
+ [-1, 3, BottleneckCSPB, [384]], # 35
56
+ [-1, 1, Conv, [768, 3, 1]],
57
+ [-2, 1, Conv, [512, 3, 2]],
58
+ [[-1, 12], 1, Concat, [1]], # cat
59
+ [-1, 3, BottleneckCSPB, [512]], # 39
60
+ [-1, 1, Conv, [1024, 3, 1]],
61
+
62
+ [[28,32,36,40], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
63
+ ]
detection/cfg/baseline/yolov3-spp.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3-SPP head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, SPP, [512, [5, 9, 13]]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]
detection/cfg/baseline/yolov3.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3 head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, Conv, [512, [1, 1]]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]
detection/cfg/baseline/yolov4-csp.yaml ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # CSP-Darknet backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, BottleneckCSPC, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, BottleneckCSPC, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, BottleneckCSPC, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, BottleneckCSPC, [1024]], # 10
26
+ ]
27
+
28
+ # CSP-Dark-PAN head
29
+ head:
30
+ [[-1, 1, SPPCSPC, [512]], # 11
31
+ [-1, 1, Conv, [256, 1, 1]],
32
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
33
+ [8, 1, Conv, [256, 1, 1]], # route backbone P4
34
+ [[-1, -2], 1, Concat, [1]],
35
+ [-1, 2, BottleneckCSPB, [256]], # 16
36
+ [-1, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [6, 1, Conv, [128, 1, 1]], # route backbone P3
39
+ [[-1, -2], 1, Concat, [1]],
40
+ [-1, 2, BottleneckCSPB, [128]], # 21
41
+ [-1, 1, Conv, [256, 3, 1]],
42
+ [-2, 1, Conv, [256, 3, 2]],
43
+ [[-1, 16], 1, Concat, [1]], # cat
44
+ [-1, 2, BottleneckCSPB, [256]], # 25
45
+ [-1, 1, Conv, [512, 3, 1]],
46
+ [-2, 1, Conv, [512, 3, 2]],
47
+ [[-1, 11], 1, Concat, [1]], # cat
48
+ [-1, 2, BottleneckCSPB, [512]], # 29
49
+ [-1, 1, Conv, [1024, 3, 1]],
50
+
51
+ [[22,26,30], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
52
+ ]
detection/cfg/deploy/yolov7-d6.yaml ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7-d6 backbone
14
+ backbone:
15
+ # [from, number, module, args],
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [96, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, DownC, [192]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [-1, 1, Conv, [64, 3, 1]],
29
+ [-1, 1, Conv, [64, 3, 1]],
30
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
31
+ [-1, 1, Conv, [192, 1, 1]], # 14
32
+
33
+ [-1, 1, DownC, [384]], # 15-P3/8
34
+ [-1, 1, Conv, [128, 1, 1]],
35
+ [-2, 1, Conv, [128, 1, 1]],
36
+ [-1, 1, Conv, [128, 3, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [-1, 1, Conv, [128, 3, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [-1, 1, Conv, [128, 3, 1]],
41
+ [-1, 1, Conv, [128, 3, 1]],
42
+ [-1, 1, Conv, [128, 3, 1]],
43
+ [-1, 1, Conv, [128, 3, 1]],
44
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
45
+ [-1, 1, Conv, [384, 1, 1]], # 27
46
+
47
+ [-1, 1, DownC, [768]], # 28-P4/16
48
+ [-1, 1, Conv, [256, 1, 1]],
49
+ [-2, 1, Conv, [256, 1, 1]],
50
+ [-1, 1, Conv, [256, 3, 1]],
51
+ [-1, 1, Conv, [256, 3, 1]],
52
+ [-1, 1, Conv, [256, 3, 1]],
53
+ [-1, 1, Conv, [256, 3, 1]],
54
+ [-1, 1, Conv, [256, 3, 1]],
55
+ [-1, 1, Conv, [256, 3, 1]],
56
+ [-1, 1, Conv, [256, 3, 1]],
57
+ [-1, 1, Conv, [256, 3, 1]],
58
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
59
+ [-1, 1, Conv, [768, 1, 1]], # 40
60
+
61
+ [-1, 1, DownC, [1152]], # 41-P5/32
62
+ [-1, 1, Conv, [384, 1, 1]],
63
+ [-2, 1, Conv, [384, 1, 1]],
64
+ [-1, 1, Conv, [384, 3, 1]],
65
+ [-1, 1, Conv, [384, 3, 1]],
66
+ [-1, 1, Conv, [384, 3, 1]],
67
+ [-1, 1, Conv, [384, 3, 1]],
68
+ [-1, 1, Conv, [384, 3, 1]],
69
+ [-1, 1, Conv, [384, 3, 1]],
70
+ [-1, 1, Conv, [384, 3, 1]],
71
+ [-1, 1, Conv, [384, 3, 1]],
72
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
73
+ [-1, 1, Conv, [1152, 1, 1]], # 53
74
+
75
+ [-1, 1, DownC, [1536]], # 54-P6/64
76
+ [-1, 1, Conv, [512, 1, 1]],
77
+ [-2, 1, Conv, [512, 1, 1]],
78
+ [-1, 1, Conv, [512, 3, 1]],
79
+ [-1, 1, Conv, [512, 3, 1]],
80
+ [-1, 1, Conv, [512, 3, 1]],
81
+ [-1, 1, Conv, [512, 3, 1]],
82
+ [-1, 1, Conv, [512, 3, 1]],
83
+ [-1, 1, Conv, [512, 3, 1]],
84
+ [-1, 1, Conv, [512, 3, 1]],
85
+ [-1, 1, Conv, [512, 3, 1]],
86
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
87
+ [-1, 1, Conv, [1536, 1, 1]], # 66
88
+ ]
89
+
90
+ # yolov7-d6 head
91
+ head:
92
+ [[-1, 1, SPPCSPC, [768]], # 67
93
+
94
+ [-1, 1, Conv, [576, 1, 1]],
95
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
96
+ [53, 1, Conv, [576, 1, 1]], # route backbone P5
97
+ [[-1, -2], 1, Concat, [1]],
98
+
99
+ [-1, 1, Conv, [384, 1, 1]],
100
+ [-2, 1, Conv, [384, 1, 1]],
101
+ [-1, 1, Conv, [192, 3, 1]],
102
+ [-1, 1, Conv, [192, 3, 1]],
103
+ [-1, 1, Conv, [192, 3, 1]],
104
+ [-1, 1, Conv, [192, 3, 1]],
105
+ [-1, 1, Conv, [192, 3, 1]],
106
+ [-1, 1, Conv, [192, 3, 1]],
107
+ [-1, 1, Conv, [192, 3, 1]],
108
+ [-1, 1, Conv, [192, 3, 1]],
109
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
110
+ [-1, 1, Conv, [576, 1, 1]], # 83
111
+
112
+ [-1, 1, Conv, [384, 1, 1]],
113
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
114
+ [40, 1, Conv, [384, 1, 1]], # route backbone P4
115
+ [[-1, -2], 1, Concat, [1]],
116
+
117
+ [-1, 1, Conv, [256, 1, 1]],
118
+ [-2, 1, Conv, [256, 1, 1]],
119
+ [-1, 1, Conv, [128, 3, 1]],
120
+ [-1, 1, Conv, [128, 3, 1]],
121
+ [-1, 1, Conv, [128, 3, 1]],
122
+ [-1, 1, Conv, [128, 3, 1]],
123
+ [-1, 1, Conv, [128, 3, 1]],
124
+ [-1, 1, Conv, [128, 3, 1]],
125
+ [-1, 1, Conv, [128, 3, 1]],
126
+ [-1, 1, Conv, [128, 3, 1]],
127
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
128
+ [-1, 1, Conv, [384, 1, 1]], # 99
129
+
130
+ [-1, 1, Conv, [192, 1, 1]],
131
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
132
+ [27, 1, Conv, [192, 1, 1]], # route backbone P3
133
+ [[-1, -2], 1, Concat, [1]],
134
+
135
+ [-1, 1, Conv, [128, 1, 1]],
136
+ [-2, 1, Conv, [128, 1, 1]],
137
+ [-1, 1, Conv, [64, 3, 1]],
138
+ [-1, 1, Conv, [64, 3, 1]],
139
+ [-1, 1, Conv, [64, 3, 1]],
140
+ [-1, 1, Conv, [64, 3, 1]],
141
+ [-1, 1, Conv, [64, 3, 1]],
142
+ [-1, 1, Conv, [64, 3, 1]],
143
+ [-1, 1, Conv, [64, 3, 1]],
144
+ [-1, 1, Conv, [64, 3, 1]],
145
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
146
+ [-1, 1, Conv, [192, 1, 1]], # 115
147
+
148
+ [-1, 1, DownC, [384]],
149
+ [[-1, 99], 1, Concat, [1]],
150
+
151
+ [-1, 1, Conv, [256, 1, 1]],
152
+ [-2, 1, Conv, [256, 1, 1]],
153
+ [-1, 1, Conv, [128, 3, 1]],
154
+ [-1, 1, Conv, [128, 3, 1]],
155
+ [-1, 1, Conv, [128, 3, 1]],
156
+ [-1, 1, Conv, [128, 3, 1]],
157
+ [-1, 1, Conv, [128, 3, 1]],
158
+ [-1, 1, Conv, [128, 3, 1]],
159
+ [-1, 1, Conv, [128, 3, 1]],
160
+ [-1, 1, Conv, [128, 3, 1]],
161
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
162
+ [-1, 1, Conv, [384, 1, 1]], # 129
163
+
164
+ [-1, 1, DownC, [576]],
165
+ [[-1, 83], 1, Concat, [1]],
166
+
167
+ [-1, 1, Conv, [384, 1, 1]],
168
+ [-2, 1, Conv, [384, 1, 1]],
169
+ [-1, 1, Conv, [192, 3, 1]],
170
+ [-1, 1, Conv, [192, 3, 1]],
171
+ [-1, 1, Conv, [192, 3, 1]],
172
+ [-1, 1, Conv, [192, 3, 1]],
173
+ [-1, 1, Conv, [192, 3, 1]],
174
+ [-1, 1, Conv, [192, 3, 1]],
175
+ [-1, 1, Conv, [192, 3, 1]],
176
+ [-1, 1, Conv, [192, 3, 1]],
177
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
178
+ [-1, 1, Conv, [576, 1, 1]], # 143
179
+
180
+ [-1, 1, DownC, [768]],
181
+ [[-1, 67], 1, Concat, [1]],
182
+
183
+ [-1, 1, Conv, [512, 1, 1]],
184
+ [-2, 1, Conv, [512, 1, 1]],
185
+ [-1, 1, Conv, [256, 3, 1]],
186
+ [-1, 1, Conv, [256, 3, 1]],
187
+ [-1, 1, Conv, [256, 3, 1]],
188
+ [-1, 1, Conv, [256, 3, 1]],
189
+ [-1, 1, Conv, [256, 3, 1]],
190
+ [-1, 1, Conv, [256, 3, 1]],
191
+ [-1, 1, Conv, [256, 3, 1]],
192
+ [-1, 1, Conv, [256, 3, 1]],
193
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
194
+ [-1, 1, Conv, [768, 1, 1]], # 157
195
+
196
+ [115, 1, Conv, [384, 3, 1]],
197
+ [129, 1, Conv, [768, 3, 1]],
198
+ [143, 1, Conv, [1152, 3, 1]],
199
+ [157, 1, Conv, [1536, 3, 1]],
200
+
201
+ [[158,159,160,161], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
202
+ ]
detection/cfg/deploy/yolov7-e6.yaml ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7-e6 backbone
14
+ backbone:
15
+ # [from, number, module, args],
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, DownC, [160]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
29
+ [-1, 1, Conv, [160, 1, 1]], # 12
30
+
31
+ [-1, 1, DownC, [320]], # 13-P3/8
32
+ [-1, 1, Conv, [128, 1, 1]],
33
+ [-2, 1, Conv, [128, 1, 1]],
34
+ [-1, 1, Conv, [128, 3, 1]],
35
+ [-1, 1, Conv, [128, 3, 1]],
36
+ [-1, 1, Conv, [128, 3, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [-1, 1, Conv, [128, 3, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
41
+ [-1, 1, Conv, [320, 1, 1]], # 23
42
+
43
+ [-1, 1, DownC, [640]], # 24-P4/16
44
+ [-1, 1, Conv, [256, 1, 1]],
45
+ [-2, 1, Conv, [256, 1, 1]],
46
+ [-1, 1, Conv, [256, 3, 1]],
47
+ [-1, 1, Conv, [256, 3, 1]],
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-1, 1, Conv, [256, 3, 1]],
50
+ [-1, 1, Conv, [256, 3, 1]],
51
+ [-1, 1, Conv, [256, 3, 1]],
52
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
53
+ [-1, 1, Conv, [640, 1, 1]], # 34
54
+
55
+ [-1, 1, DownC, [960]], # 35-P5/32
56
+ [-1, 1, Conv, [384, 1, 1]],
57
+ [-2, 1, Conv, [384, 1, 1]],
58
+ [-1, 1, Conv, [384, 3, 1]],
59
+ [-1, 1, Conv, [384, 3, 1]],
60
+ [-1, 1, Conv, [384, 3, 1]],
61
+ [-1, 1, Conv, [384, 3, 1]],
62
+ [-1, 1, Conv, [384, 3, 1]],
63
+ [-1, 1, Conv, [384, 3, 1]],
64
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
65
+ [-1, 1, Conv, [960, 1, 1]], # 45
66
+
67
+ [-1, 1, DownC, [1280]], # 46-P6/64
68
+ [-1, 1, Conv, [512, 1, 1]],
69
+ [-2, 1, Conv, [512, 1, 1]],
70
+ [-1, 1, Conv, [512, 3, 1]],
71
+ [-1, 1, Conv, [512, 3, 1]],
72
+ [-1, 1, Conv, [512, 3, 1]],
73
+ [-1, 1, Conv, [512, 3, 1]],
74
+ [-1, 1, Conv, [512, 3, 1]],
75
+ [-1, 1, Conv, [512, 3, 1]],
76
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
77
+ [-1, 1, Conv, [1280, 1, 1]], # 56
78
+ ]
79
+
80
+ # yolov7-e6 head
81
+ head:
82
+ [[-1, 1, SPPCSPC, [640]], # 57
83
+
84
+ [-1, 1, Conv, [480, 1, 1]],
85
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
86
+ [45, 1, Conv, [480, 1, 1]], # route backbone P5
87
+ [[-1, -2], 1, Concat, [1]],
88
+
89
+ [-1, 1, Conv, [384, 1, 1]],
90
+ [-2, 1, Conv, [384, 1, 1]],
91
+ [-1, 1, Conv, [192, 3, 1]],
92
+ [-1, 1, Conv, [192, 3, 1]],
93
+ [-1, 1, Conv, [192, 3, 1]],
94
+ [-1, 1, Conv, [192, 3, 1]],
95
+ [-1, 1, Conv, [192, 3, 1]],
96
+ [-1, 1, Conv, [192, 3, 1]],
97
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
98
+ [-1, 1, Conv, [480, 1, 1]], # 71
99
+
100
+ [-1, 1, Conv, [320, 1, 1]],
101
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
102
+ [34, 1, Conv, [320, 1, 1]], # route backbone P4
103
+ [[-1, -2], 1, Concat, [1]],
104
+
105
+ [-1, 1, Conv, [256, 1, 1]],
106
+ [-2, 1, Conv, [256, 1, 1]],
107
+ [-1, 1, Conv, [128, 3, 1]],
108
+ [-1, 1, Conv, [128, 3, 1]],
109
+ [-1, 1, Conv, [128, 3, 1]],
110
+ [-1, 1, Conv, [128, 3, 1]],
111
+ [-1, 1, Conv, [128, 3, 1]],
112
+ [-1, 1, Conv, [128, 3, 1]],
113
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
114
+ [-1, 1, Conv, [320, 1, 1]], # 85
115
+
116
+ [-1, 1, Conv, [160, 1, 1]],
117
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
118
+ [23, 1, Conv, [160, 1, 1]], # route backbone P3
119
+ [[-1, -2], 1, Concat, [1]],
120
+
121
+ [-1, 1, Conv, [128, 1, 1]],
122
+ [-2, 1, Conv, [128, 1, 1]],
123
+ [-1, 1, Conv, [64, 3, 1]],
124
+ [-1, 1, Conv, [64, 3, 1]],
125
+ [-1, 1, Conv, [64, 3, 1]],
126
+ [-1, 1, Conv, [64, 3, 1]],
127
+ [-1, 1, Conv, [64, 3, 1]],
128
+ [-1, 1, Conv, [64, 3, 1]],
129
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
130
+ [-1, 1, Conv, [160, 1, 1]], # 99
131
+
132
+ [-1, 1, DownC, [320]],
133
+ [[-1, 85], 1, Concat, [1]],
134
+
135
+ [-1, 1, Conv, [256, 1, 1]],
136
+ [-2, 1, Conv, [256, 1, 1]],
137
+ [-1, 1, Conv, [128, 3, 1]],
138
+ [-1, 1, Conv, [128, 3, 1]],
139
+ [-1, 1, Conv, [128, 3, 1]],
140
+ [-1, 1, Conv, [128, 3, 1]],
141
+ [-1, 1, Conv, [128, 3, 1]],
142
+ [-1, 1, Conv, [128, 3, 1]],
143
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
144
+ [-1, 1, Conv, [320, 1, 1]], # 111
145
+
146
+ [-1, 1, DownC, [480]],
147
+ [[-1, 71], 1, Concat, [1]],
148
+
149
+ [-1, 1, Conv, [384, 1, 1]],
150
+ [-2, 1, Conv, [384, 1, 1]],
151
+ [-1, 1, Conv, [192, 3, 1]],
152
+ [-1, 1, Conv, [192, 3, 1]],
153
+ [-1, 1, Conv, [192, 3, 1]],
154
+ [-1, 1, Conv, [192, 3, 1]],
155
+ [-1, 1, Conv, [192, 3, 1]],
156
+ [-1, 1, Conv, [192, 3, 1]],
157
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
158
+ [-1, 1, Conv, [480, 1, 1]], # 123
159
+
160
+ [-1, 1, DownC, [640]],
161
+ [[-1, 57], 1, Concat, [1]],
162
+
163
+ [-1, 1, Conv, [512, 1, 1]],
164
+ [-2, 1, Conv, [512, 1, 1]],
165
+ [-1, 1, Conv, [256, 3, 1]],
166
+ [-1, 1, Conv, [256, 3, 1]],
167
+ [-1, 1, Conv, [256, 3, 1]],
168
+ [-1, 1, Conv, [256, 3, 1]],
169
+ [-1, 1, Conv, [256, 3, 1]],
170
+ [-1, 1, Conv, [256, 3, 1]],
171
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
172
+ [-1, 1, Conv, [640, 1, 1]], # 135
173
+
174
+ [99, 1, Conv, [320, 3, 1]],
175
+ [111, 1, Conv, [640, 3, 1]],
176
+ [123, 1, Conv, [960, 3, 1]],
177
+ [135, 1, Conv, [1280, 3, 1]],
178
+
179
+ [[136,137,138,139], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
180
+ ]
detection/cfg/deploy/yolov7-e6e.yaml ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7-e6e backbone
14
+ backbone:
15
+ # [from, number, module, args],
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, DownC, [160]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
29
+ [-1, 1, Conv, [160, 1, 1]], # 12
30
+ [-11, 1, Conv, [64, 1, 1]],
31
+ [-12, 1, Conv, [64, 1, 1]],
32
+ [-1, 1, Conv, [64, 3, 1]],
33
+ [-1, 1, Conv, [64, 3, 1]],
34
+ [-1, 1, Conv, [64, 3, 1]],
35
+ [-1, 1, Conv, [64, 3, 1]],
36
+ [-1, 1, Conv, [64, 3, 1]],
37
+ [-1, 1, Conv, [64, 3, 1]],
38
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
39
+ [-1, 1, Conv, [160, 1, 1]], # 22
40
+ [[-1, -11], 1, Shortcut, [1]], # 23
41
+
42
+ [-1, 1, DownC, [320]], # 24-P3/8
43
+ [-1, 1, Conv, [128, 1, 1]],
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, Conv, [128, 3, 1]],
46
+ [-1, 1, Conv, [128, 3, 1]],
47
+ [-1, 1, Conv, [128, 3, 1]],
48
+ [-1, 1, Conv, [128, 3, 1]],
49
+ [-1, 1, Conv, [128, 3, 1]],
50
+ [-1, 1, Conv, [128, 3, 1]],
51
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
52
+ [-1, 1, Conv, [320, 1, 1]], # 34
53
+ [-11, 1, Conv, [128, 1, 1]],
54
+ [-12, 1, Conv, [128, 1, 1]],
55
+ [-1, 1, Conv, [128, 3, 1]],
56
+ [-1, 1, Conv, [128, 3, 1]],
57
+ [-1, 1, Conv, [128, 3, 1]],
58
+ [-1, 1, Conv, [128, 3, 1]],
59
+ [-1, 1, Conv, [128, 3, 1]],
60
+ [-1, 1, Conv, [128, 3, 1]],
61
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
62
+ [-1, 1, Conv, [320, 1, 1]], # 44
63
+ [[-1, -11], 1, Shortcut, [1]], # 45
64
+
65
+ [-1, 1, DownC, [640]], # 46-P4/16
66
+ [-1, 1, Conv, [256, 1, 1]],
67
+ [-2, 1, Conv, [256, 1, 1]],
68
+ [-1, 1, Conv, [256, 3, 1]],
69
+ [-1, 1, Conv, [256, 3, 1]],
70
+ [-1, 1, Conv, [256, 3, 1]],
71
+ [-1, 1, Conv, [256, 3, 1]],
72
+ [-1, 1, Conv, [256, 3, 1]],
73
+ [-1, 1, Conv, [256, 3, 1]],
74
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
75
+ [-1, 1, Conv, [640, 1, 1]], # 56
76
+ [-11, 1, Conv, [256, 1, 1]],
77
+ [-12, 1, Conv, [256, 1, 1]],
78
+ [-1, 1, Conv, [256, 3, 1]],
79
+ [-1, 1, Conv, [256, 3, 1]],
80
+ [-1, 1, Conv, [256, 3, 1]],
81
+ [-1, 1, Conv, [256, 3, 1]],
82
+ [-1, 1, Conv, [256, 3, 1]],
83
+ [-1, 1, Conv, [256, 3, 1]],
84
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
85
+ [-1, 1, Conv, [640, 1, 1]], # 66
86
+ [[-1, -11], 1, Shortcut, [1]], # 67
87
+
88
+ [-1, 1, DownC, [960]], # 68-P5/32
89
+ [-1, 1, Conv, [384, 1, 1]],
90
+ [-2, 1, Conv, [384, 1, 1]],
91
+ [-1, 1, Conv, [384, 3, 1]],
92
+ [-1, 1, Conv, [384, 3, 1]],
93
+ [-1, 1, Conv, [384, 3, 1]],
94
+ [-1, 1, Conv, [384, 3, 1]],
95
+ [-1, 1, Conv, [384, 3, 1]],
96
+ [-1, 1, Conv, [384, 3, 1]],
97
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
98
+ [-1, 1, Conv, [960, 1, 1]], # 78
99
+ [-11, 1, Conv, [384, 1, 1]],
100
+ [-12, 1, Conv, [384, 1, 1]],
101
+ [-1, 1, Conv, [384, 3, 1]],
102
+ [-1, 1, Conv, [384, 3, 1]],
103
+ [-1, 1, Conv, [384, 3, 1]],
104
+ [-1, 1, Conv, [384, 3, 1]],
105
+ [-1, 1, Conv, [384, 3, 1]],
106
+ [-1, 1, Conv, [384, 3, 1]],
107
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
108
+ [-1, 1, Conv, [960, 1, 1]], # 88
109
+ [[-1, -11], 1, Shortcut, [1]], # 89
110
+
111
+ [-1, 1, DownC, [1280]], # 90-P6/64
112
+ [-1, 1, Conv, [512, 1, 1]],
113
+ [-2, 1, Conv, [512, 1, 1]],
114
+ [-1, 1, Conv, [512, 3, 1]],
115
+ [-1, 1, Conv, [512, 3, 1]],
116
+ [-1, 1, Conv, [512, 3, 1]],
117
+ [-1, 1, Conv, [512, 3, 1]],
118
+ [-1, 1, Conv, [512, 3, 1]],
119
+ [-1, 1, Conv, [512, 3, 1]],
120
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
121
+ [-1, 1, Conv, [1280, 1, 1]], # 100
122
+ [-11, 1, Conv, [512, 1, 1]],
123
+ [-12, 1, Conv, [512, 1, 1]],
124
+ [-1, 1, Conv, [512, 3, 1]],
125
+ [-1, 1, Conv, [512, 3, 1]],
126
+ [-1, 1, Conv, [512, 3, 1]],
127
+ [-1, 1, Conv, [512, 3, 1]],
128
+ [-1, 1, Conv, [512, 3, 1]],
129
+ [-1, 1, Conv, [512, 3, 1]],
130
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
131
+ [-1, 1, Conv, [1280, 1, 1]], # 110
132
+ [[-1, -11], 1, Shortcut, [1]], # 111
133
+ ]
134
+
135
+ # yolov7-e6e head
136
+ head:
137
+ [[-1, 1, SPPCSPC, [640]], # 112
138
+
139
+ [-1, 1, Conv, [480, 1, 1]],
140
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
141
+ [89, 1, Conv, [480, 1, 1]], # route backbone P5
142
+ [[-1, -2], 1, Concat, [1]],
143
+
144
+ [-1, 1, Conv, [384, 1, 1]],
145
+ [-2, 1, Conv, [384, 1, 1]],
146
+ [-1, 1, Conv, [192, 3, 1]],
147
+ [-1, 1, Conv, [192, 3, 1]],
148
+ [-1, 1, Conv, [192, 3, 1]],
149
+ [-1, 1, Conv, [192, 3, 1]],
150
+ [-1, 1, Conv, [192, 3, 1]],
151
+ [-1, 1, Conv, [192, 3, 1]],
152
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
153
+ [-1, 1, Conv, [480, 1, 1]], # 126
154
+ [-11, 1, Conv, [384, 1, 1]],
155
+ [-12, 1, Conv, [384, 1, 1]],
156
+ [-1, 1, Conv, [192, 3, 1]],
157
+ [-1, 1, Conv, [192, 3, 1]],
158
+ [-1, 1, Conv, [192, 3, 1]],
159
+ [-1, 1, Conv, [192, 3, 1]],
160
+ [-1, 1, Conv, [192, 3, 1]],
161
+ [-1, 1, Conv, [192, 3, 1]],
162
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
163
+ [-1, 1, Conv, [480, 1, 1]], # 136
164
+ [[-1, -11], 1, Shortcut, [1]], # 137
165
+
166
+ [-1, 1, Conv, [320, 1, 1]],
167
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
168
+ [67, 1, Conv, [320, 1, 1]], # route backbone P4
169
+ [[-1, -2], 1, Concat, [1]],
170
+
171
+ [-1, 1, Conv, [256, 1, 1]],
172
+ [-2, 1, Conv, [256, 1, 1]],
173
+ [-1, 1, Conv, [128, 3, 1]],
174
+ [-1, 1, Conv, [128, 3, 1]],
175
+ [-1, 1, Conv, [128, 3, 1]],
176
+ [-1, 1, Conv, [128, 3, 1]],
177
+ [-1, 1, Conv, [128, 3, 1]],
178
+ [-1, 1, Conv, [128, 3, 1]],
179
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
180
+ [-1, 1, Conv, [320, 1, 1]], # 151
181
+ [-11, 1, Conv, [256, 1, 1]],
182
+ [-12, 1, Conv, [256, 1, 1]],
183
+ [-1, 1, Conv, [128, 3, 1]],
184
+ [-1, 1, Conv, [128, 3, 1]],
185
+ [-1, 1, Conv, [128, 3, 1]],
186
+ [-1, 1, Conv, [128, 3, 1]],
187
+ [-1, 1, Conv, [128, 3, 1]],
188
+ [-1, 1, Conv, [128, 3, 1]],
189
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
190
+ [-1, 1, Conv, [320, 1, 1]], # 161
191
+ [[-1, -11], 1, Shortcut, [1]], # 162
192
+
193
+ [-1, 1, Conv, [160, 1, 1]],
194
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
195
+ [45, 1, Conv, [160, 1, 1]], # route backbone P3
196
+ [[-1, -2], 1, Concat, [1]],
197
+
198
+ [-1, 1, Conv, [128, 1, 1]],
199
+ [-2, 1, Conv, [128, 1, 1]],
200
+ [-1, 1, Conv, [64, 3, 1]],
201
+ [-1, 1, Conv, [64, 3, 1]],
202
+ [-1, 1, Conv, [64, 3, 1]],
203
+ [-1, 1, Conv, [64, 3, 1]],
204
+ [-1, 1, Conv, [64, 3, 1]],
205
+ [-1, 1, Conv, [64, 3, 1]],
206
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
207
+ [-1, 1, Conv, [160, 1, 1]], # 176
208
+ [-11, 1, Conv, [128, 1, 1]],
209
+ [-12, 1, Conv, [128, 1, 1]],
210
+ [-1, 1, Conv, [64, 3, 1]],
211
+ [-1, 1, Conv, [64, 3, 1]],
212
+ [-1, 1, Conv, [64, 3, 1]],
213
+ [-1, 1, Conv, [64, 3, 1]],
214
+ [-1, 1, Conv, [64, 3, 1]],
215
+ [-1, 1, Conv, [64, 3, 1]],
216
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
217
+ [-1, 1, Conv, [160, 1, 1]], # 186
218
+ [[-1, -11], 1, Shortcut, [1]], # 187
219
+
220
+ [-1, 1, DownC, [320]],
221
+ [[-1, 162], 1, Concat, [1]],
222
+
223
+ [-1, 1, Conv, [256, 1, 1]],
224
+ [-2, 1, Conv, [256, 1, 1]],
225
+ [-1, 1, Conv, [128, 3, 1]],
226
+ [-1, 1, Conv, [128, 3, 1]],
227
+ [-1, 1, Conv, [128, 3, 1]],
228
+ [-1, 1, Conv, [128, 3, 1]],
229
+ [-1, 1, Conv, [128, 3, 1]],
230
+ [-1, 1, Conv, [128, 3, 1]],
231
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
232
+ [-1, 1, Conv, [320, 1, 1]], # 199
233
+ [-11, 1, Conv, [256, 1, 1]],
234
+ [-12, 1, Conv, [256, 1, 1]],
235
+ [-1, 1, Conv, [128, 3, 1]],
236
+ [-1, 1, Conv, [128, 3, 1]],
237
+ [-1, 1, Conv, [128, 3, 1]],
238
+ [-1, 1, Conv, [128, 3, 1]],
239
+ [-1, 1, Conv, [128, 3, 1]],
240
+ [-1, 1, Conv, [128, 3, 1]],
241
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
242
+ [-1, 1, Conv, [320, 1, 1]], # 209
243
+ [[-1, -11], 1, Shortcut, [1]], # 210
244
+
245
+ [-1, 1, DownC, [480]],
246
+ [[-1, 137], 1, Concat, [1]],
247
+
248
+ [-1, 1, Conv, [384, 1, 1]],
249
+ [-2, 1, Conv, [384, 1, 1]],
250
+ [-1, 1, Conv, [192, 3, 1]],
251
+ [-1, 1, Conv, [192, 3, 1]],
252
+ [-1, 1, Conv, [192, 3, 1]],
253
+ [-1, 1, Conv, [192, 3, 1]],
254
+ [-1, 1, Conv, [192, 3, 1]],
255
+ [-1, 1, Conv, [192, 3, 1]],
256
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
257
+ [-1, 1, Conv, [480, 1, 1]], # 222
258
+ [-11, 1, Conv, [384, 1, 1]],
259
+ [-12, 1, Conv, [384, 1, 1]],
260
+ [-1, 1, Conv, [192, 3, 1]],
261
+ [-1, 1, Conv, [192, 3, 1]],
262
+ [-1, 1, Conv, [192, 3, 1]],
263
+ [-1, 1, Conv, [192, 3, 1]],
264
+ [-1, 1, Conv, [192, 3, 1]],
265
+ [-1, 1, Conv, [192, 3, 1]],
266
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
267
+ [-1, 1, Conv, [480, 1, 1]], # 232
268
+ [[-1, -11], 1, Shortcut, [1]], # 233
269
+
270
+ [-1, 1, DownC, [640]],
271
+ [[-1, 112], 1, Concat, [1]],
272
+
273
+ [-1, 1, Conv, [512, 1, 1]],
274
+ [-2, 1, Conv, [512, 1, 1]],
275
+ [-1, 1, Conv, [256, 3, 1]],
276
+ [-1, 1, Conv, [256, 3, 1]],
277
+ [-1, 1, Conv, [256, 3, 1]],
278
+ [-1, 1, Conv, [256, 3, 1]],
279
+ [-1, 1, Conv, [256, 3, 1]],
280
+ [-1, 1, Conv, [256, 3, 1]],
281
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
282
+ [-1, 1, Conv, [640, 1, 1]], # 245
283
+ [-11, 1, Conv, [512, 1, 1]],
284
+ [-12, 1, Conv, [512, 1, 1]],
285
+ [-1, 1, Conv, [256, 3, 1]],
286
+ [-1, 1, Conv, [256, 3, 1]],
287
+ [-1, 1, Conv, [256, 3, 1]],
288
+ [-1, 1, Conv, [256, 3, 1]],
289
+ [-1, 1, Conv, [256, 3, 1]],
290
+ [-1, 1, Conv, [256, 3, 1]],
291
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
292
+ [-1, 1, Conv, [640, 1, 1]], # 255
293
+ [[-1, -11], 1, Shortcut, [1]], # 256
294
+
295
+ [187, 1, Conv, [320, 3, 1]],
296
+ [210, 1, Conv, [640, 3, 1]],
297
+ [233, 1, Conv, [960, 3, 1]],
298
+ [256, 1, Conv, [1280, 3, 1]],
299
+
300
+ [[257,258,259,260], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
301
+ ]
detection/cfg/deploy/yolov7-tiny-silu.yaml ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv7-tiny backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 2]], # 0-P1/2
16
+
17
+ [-1, 1, Conv, [64, 3, 2]], # 1-P2/4
18
+
19
+ [-1, 1, Conv, [32, 1, 1]],
20
+ [-2, 1, Conv, [32, 1, 1]],
21
+ [-1, 1, Conv, [32, 3, 1]],
22
+ [-1, 1, Conv, [32, 3, 1]],
23
+ [[-1, -2, -3, -4], 1, Concat, [1]],
24
+ [-1, 1, Conv, [64, 1, 1]], # 7
25
+
26
+ [-1, 1, MP, []], # 8-P3/8
27
+ [-1, 1, Conv, [64, 1, 1]],
28
+ [-2, 1, Conv, [64, 1, 1]],
29
+ [-1, 1, Conv, [64, 3, 1]],
30
+ [-1, 1, Conv, [64, 3, 1]],
31
+ [[-1, -2, -3, -4], 1, Concat, [1]],
32
+ [-1, 1, Conv, [128, 1, 1]], # 14
33
+
34
+ [-1, 1, MP, []], # 15-P4/16
35
+ [-1, 1, Conv, [128, 1, 1]],
36
+ [-2, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [-1, 1, Conv, [128, 3, 1]],
39
+ [[-1, -2, -3, -4], 1, Concat, [1]],
40
+ [-1, 1, Conv, [256, 1, 1]], # 21
41
+
42
+ [-1, 1, MP, []], # 22-P5/32
43
+ [-1, 1, Conv, [256, 1, 1]],
44
+ [-2, 1, Conv, [256, 1, 1]],
45
+ [-1, 1, Conv, [256, 3, 1]],
46
+ [-1, 1, Conv, [256, 3, 1]],
47
+ [[-1, -2, -3, -4], 1, Concat, [1]],
48
+ [-1, 1, Conv, [512, 1, 1]], # 28
49
+ ]
50
+
51
+ # YOLOv7-tiny head
52
+ head:
53
+ [[-1, 1, Conv, [256, 1, 1]],
54
+ [-2, 1, Conv, [256, 1, 1]],
55
+ [-1, 1, SP, [5]],
56
+ [-2, 1, SP, [9]],
57
+ [-3, 1, SP, [13]],
58
+ [[-1, -2, -3, -4], 1, Concat, [1]],
59
+ [-1, 1, Conv, [256, 1, 1]],
60
+ [[-1, -7], 1, Concat, [1]],
61
+ [-1, 1, Conv, [256, 1, 1]], # 37
62
+
63
+ [-1, 1, Conv, [128, 1, 1]],
64
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
65
+ [21, 1, Conv, [128, 1, 1]], # route backbone P4
66
+ [[-1, -2], 1, Concat, [1]],
67
+
68
+ [-1, 1, Conv, [64, 1, 1]],
69
+ [-2, 1, Conv, [64, 1, 1]],
70
+ [-1, 1, Conv, [64, 3, 1]],
71
+ [-1, 1, Conv, [64, 3, 1]],
72
+ [[-1, -2, -3, -4], 1, Concat, [1]],
73
+ [-1, 1, Conv, [128, 1, 1]], # 47
74
+
75
+ [-1, 1, Conv, [64, 1, 1]],
76
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
77
+ [14, 1, Conv, [64, 1, 1]], # route backbone P3
78
+ [[-1, -2], 1, Concat, [1]],
79
+
80
+ [-1, 1, Conv, [32, 1, 1]],
81
+ [-2, 1, Conv, [32, 1, 1]],
82
+ [-1, 1, Conv, [32, 3, 1]],
83
+ [-1, 1, Conv, [32, 3, 1]],
84
+ [[-1, -2, -3, -4], 1, Concat, [1]],
85
+ [-1, 1, Conv, [64, 1, 1]], # 57
86
+
87
+ [-1, 1, Conv, [128, 3, 2]],
88
+ [[-1, 47], 1, Concat, [1]],
89
+
90
+ [-1, 1, Conv, [64, 1, 1]],
91
+ [-2, 1, Conv, [64, 1, 1]],
92
+ [-1, 1, Conv, [64, 3, 1]],
93
+ [-1, 1, Conv, [64, 3, 1]],
94
+ [[-1, -2, -3, -4], 1, Concat, [1]],
95
+ [-1, 1, Conv, [128, 1, 1]], # 65
96
+
97
+ [-1, 1, Conv, [256, 3, 2]],
98
+ [[-1, 37], 1, Concat, [1]],
99
+
100
+ [-1, 1, Conv, [128, 1, 1]],
101
+ [-2, 1, Conv, [128, 1, 1]],
102
+ [-1, 1, Conv, [128, 3, 1]],
103
+ [-1, 1, Conv, [128, 3, 1]],
104
+ [[-1, -2, -3, -4], 1, Concat, [1]],
105
+ [-1, 1, Conv, [256, 1, 1]], # 73
106
+
107
+ [57, 1, Conv, [128, 3, 1]],
108
+ [65, 1, Conv, [256, 3, 1]],
109
+ [73, 1, Conv, [512, 3, 1]],
110
+
111
+ [[74,75,76], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
112
+ ]
detection/cfg/deploy/yolov7-tiny.yaml ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # yolov7-tiny backbone
13
+ backbone:
14
+ # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
15
+ [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 0-P1/2
16
+
17
+ [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 1-P2/4
18
+
19
+ [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
20
+ [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
21
+ [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
22
+ [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
23
+ [[-1, -2, -3, -4], 1, Concat, [1]],
24
+ [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 7
25
+
26
+ [-1, 1, MP, []], # 8-P3/8
27
+ [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
28
+ [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
29
+ [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
30
+ [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
31
+ [[-1, -2, -3, -4], 1, Concat, [1]],
32
+ [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 14
33
+
34
+ [-1, 1, MP, []], # 15-P4/16
35
+ [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
36
+ [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
37
+ [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
38
+ [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
39
+ [[-1, -2, -3, -4], 1, Concat, [1]],
40
+ [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 21
41
+
42
+ [-1, 1, MP, []], # 22-P5/32
43
+ [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
44
+ [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
45
+ [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
46
+ [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
47
+ [[-1, -2, -3, -4], 1, Concat, [1]],
48
+ [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 28
49
+ ]
50
+
51
+ # yolov7-tiny head
52
+ head:
53
+ [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
54
+ [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
55
+ [-1, 1, SP, [5]],
56
+ [-2, 1, SP, [9]],
57
+ [-3, 1, SP, [13]],
58
+ [[-1, -2, -3, -4], 1, Concat, [1]],
59
+ [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
60
+ [[-1, -7], 1, Concat, [1]],
61
+ [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 37
62
+
63
+ [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
64
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
65
+ [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
66
+ [[-1, -2], 1, Concat, [1]],
67
+
68
+ [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
69
+ [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
70
+ [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
71
+ [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
72
+ [[-1, -2, -3, -4], 1, Concat, [1]],
73
+ [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 47
74
+
75
+ [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
76
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
77
+ [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
78
+ [[-1, -2], 1, Concat, [1]],
79
+
80
+ [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
81
+ [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
82
+ [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
83
+ [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
84
+ [[-1, -2, -3, -4], 1, Concat, [1]],
85
+ [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 57
86
+
87
+ [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
88
+ [[-1, 47], 1, Concat, [1]],
89
+
90
+ [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
91
+ [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
92
+ [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
93
+ [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
94
+ [[-1, -2, -3, -4], 1, Concat, [1]],
95
+ [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 65
96
+
97
+ [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
98
+ [[-1, 37], 1, Concat, [1]],
99
+
100
+ [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
101
+ [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
102
+ [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
103
+ [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
104
+ [[-1, -2, -3, -4], 1, Concat, [1]],
105
+ [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 73
106
+
107
+ [57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
108
+ [65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
109
+ [73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
110
+
111
+ [[74,75,76], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
112
+ ]
detection/cfg/deploy/yolov7-w6.yaml ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7-w6 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [[-1, -3, -5, -6], 1, Concat, [1]],
27
+ [-1, 1, Conv, [128, 1, 1]], # 10
28
+
29
+ [-1, 1, Conv, [256, 3, 2]], # 11-P3/8
30
+ [-1, 1, Conv, [128, 1, 1]],
31
+ [-2, 1, Conv, [128, 1, 1]],
32
+ [-1, 1, Conv, [128, 3, 1]],
33
+ [-1, 1, Conv, [128, 3, 1]],
34
+ [-1, 1, Conv, [128, 3, 1]],
35
+ [-1, 1, Conv, [128, 3, 1]],
36
+ [[-1, -3, -5, -6], 1, Concat, [1]],
37
+ [-1, 1, Conv, [256, 1, 1]], # 19
38
+
39
+ [-1, 1, Conv, [512, 3, 2]], # 20-P4/16
40
+ [-1, 1, Conv, [256, 1, 1]],
41
+ [-2, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [256, 3, 1]],
43
+ [-1, 1, Conv, [256, 3, 1]],
44
+ [-1, 1, Conv, [256, 3, 1]],
45
+ [-1, 1, Conv, [256, 3, 1]],
46
+ [[-1, -3, -5, -6], 1, Concat, [1]],
47
+ [-1, 1, Conv, [512, 1, 1]], # 28
48
+
49
+ [-1, 1, Conv, [768, 3, 2]], # 29-P5/32
50
+ [-1, 1, Conv, [384, 1, 1]],
51
+ [-2, 1, Conv, [384, 1, 1]],
52
+ [-1, 1, Conv, [384, 3, 1]],
53
+ [-1, 1, Conv, [384, 3, 1]],
54
+ [-1, 1, Conv, [384, 3, 1]],
55
+ [-1, 1, Conv, [384, 3, 1]],
56
+ [[-1, -3, -5, -6], 1, Concat, [1]],
57
+ [-1, 1, Conv, [768, 1, 1]], # 37
58
+
59
+ [-1, 1, Conv, [1024, 3, 2]], # 38-P6/64
60
+ [-1, 1, Conv, [512, 1, 1]],
61
+ [-2, 1, Conv, [512, 1, 1]],
62
+ [-1, 1, Conv, [512, 3, 1]],
63
+ [-1, 1, Conv, [512, 3, 1]],
64
+ [-1, 1, Conv, [512, 3, 1]],
65
+ [-1, 1, Conv, [512, 3, 1]],
66
+ [[-1, -3, -5, -6], 1, Concat, [1]],
67
+ [-1, 1, Conv, [1024, 1, 1]], # 46
68
+ ]
69
+
70
+ # yolov7-w6 head
71
+ head:
72
+ [[-1, 1, SPPCSPC, [512]], # 47
73
+
74
+ [-1, 1, Conv, [384, 1, 1]],
75
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
76
+ [37, 1, Conv, [384, 1, 1]], # route backbone P5
77
+ [[-1, -2], 1, Concat, [1]],
78
+
79
+ [-1, 1, Conv, [384, 1, 1]],
80
+ [-2, 1, Conv, [384, 1, 1]],
81
+ [-1, 1, Conv, [192, 3, 1]],
82
+ [-1, 1, Conv, [192, 3, 1]],
83
+ [-1, 1, Conv, [192, 3, 1]],
84
+ [-1, 1, Conv, [192, 3, 1]],
85
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
86
+ [-1, 1, Conv, [384, 1, 1]], # 59
87
+
88
+ [-1, 1, Conv, [256, 1, 1]],
89
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
90
+ [28, 1, Conv, [256, 1, 1]], # route backbone P4
91
+ [[-1, -2], 1, Concat, [1]],
92
+
93
+ [-1, 1, Conv, [256, 1, 1]],
94
+ [-2, 1, Conv, [256, 1, 1]],
95
+ [-1, 1, Conv, [128, 3, 1]],
96
+ [-1, 1, Conv, [128, 3, 1]],
97
+ [-1, 1, Conv, [128, 3, 1]],
98
+ [-1, 1, Conv, [128, 3, 1]],
99
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
100
+ [-1, 1, Conv, [256, 1, 1]], # 71
101
+
102
+ [-1, 1, Conv, [128, 1, 1]],
103
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
104
+ [19, 1, Conv, [128, 1, 1]], # route backbone P3
105
+ [[-1, -2], 1, Concat, [1]],
106
+
107
+ [-1, 1, Conv, [128, 1, 1]],
108
+ [-2, 1, Conv, [128, 1, 1]],
109
+ [-1, 1, Conv, [64, 3, 1]],
110
+ [-1, 1, Conv, [64, 3, 1]],
111
+ [-1, 1, Conv, [64, 3, 1]],
112
+ [-1, 1, Conv, [64, 3, 1]],
113
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
114
+ [-1, 1, Conv, [128, 1, 1]], # 83
115
+
116
+ [-1, 1, Conv, [256, 3, 2]],
117
+ [[-1, 71], 1, Concat, [1]], # cat
118
+
119
+ [-1, 1, Conv, [256, 1, 1]],
120
+ [-2, 1, Conv, [256, 1, 1]],
121
+ [-1, 1, Conv, [128, 3, 1]],
122
+ [-1, 1, Conv, [128, 3, 1]],
123
+ [-1, 1, Conv, [128, 3, 1]],
124
+ [-1, 1, Conv, [128, 3, 1]],
125
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
126
+ [-1, 1, Conv, [256, 1, 1]], # 93
127
+
128
+ [-1, 1, Conv, [384, 3, 2]],
129
+ [[-1, 59], 1, Concat, [1]], # cat
130
+
131
+ [-1, 1, Conv, [384, 1, 1]],
132
+ [-2, 1, Conv, [384, 1, 1]],
133
+ [-1, 1, Conv, [192, 3, 1]],
134
+ [-1, 1, Conv, [192, 3, 1]],
135
+ [-1, 1, Conv, [192, 3, 1]],
136
+ [-1, 1, Conv, [192, 3, 1]],
137
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
138
+ [-1, 1, Conv, [384, 1, 1]], # 103
139
+
140
+ [-1, 1, Conv, [512, 3, 2]],
141
+ [[-1, 47], 1, Concat, [1]], # cat
142
+
143
+ [-1, 1, Conv, [512, 1, 1]],
144
+ [-2, 1, Conv, [512, 1, 1]],
145
+ [-1, 1, Conv, [256, 3, 1]],
146
+ [-1, 1, Conv, [256, 3, 1]],
147
+ [-1, 1, Conv, [256, 3, 1]],
148
+ [-1, 1, Conv, [256, 3, 1]],
149
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
150
+ [-1, 1, Conv, [512, 1, 1]], # 113
151
+
152
+ [83, 1, Conv, [256, 3, 1]],
153
+ [93, 1, Conv, [512, 3, 1]],
154
+ [103, 1, Conv, [768, 3, 1]],
155
+ [113, 1, Conv, [1024, 3, 1]],
156
+
157
+ [[114,115,116,117], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6)
158
+ ]
detection/cfg/deploy/yolov7.yaml ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # yolov7 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+
17
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
18
+ [-1, 1, Conv, [64, 3, 1]],
19
+
20
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
21
+ [-1, 1, Conv, [64, 1, 1]],
22
+ [-2, 1, Conv, [64, 1, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [[-1, -3, -5, -6], 1, Concat, [1]],
28
+ [-1, 1, Conv, [256, 1, 1]], # 11
29
+
30
+ [-1, 1, MP, []],
31
+ [-1, 1, Conv, [128, 1, 1]],
32
+ [-3, 1, Conv, [128, 1, 1]],
33
+ [-1, 1, Conv, [128, 3, 2]],
34
+ [[-1, -3], 1, Concat, [1]], # 16-P3/8
35
+ [-1, 1, Conv, [128, 1, 1]],
36
+ [-2, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [-1, 1, Conv, [128, 3, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [-1, 1, Conv, [128, 3, 1]],
41
+ [[-1, -3, -5, -6], 1, Concat, [1]],
42
+ [-1, 1, Conv, [512, 1, 1]], # 24
43
+
44
+ [-1, 1, MP, []],
45
+ [-1, 1, Conv, [256, 1, 1]],
46
+ [-3, 1, Conv, [256, 1, 1]],
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, -3], 1, Concat, [1]], # 29-P4/16
49
+ [-1, 1, Conv, [256, 1, 1]],
50
+ [-2, 1, Conv, [256, 1, 1]],
51
+ [-1, 1, Conv, [256, 3, 1]],
52
+ [-1, 1, Conv, [256, 3, 1]],
53
+ [-1, 1, Conv, [256, 3, 1]],
54
+ [-1, 1, Conv, [256, 3, 1]],
55
+ [[-1, -3, -5, -6], 1, Concat, [1]],
56
+ [-1, 1, Conv, [1024, 1, 1]], # 37
57
+
58
+ [-1, 1, MP, []],
59
+ [-1, 1, Conv, [512, 1, 1]],
60
+ [-3, 1, Conv, [512, 1, 1]],
61
+ [-1, 1, Conv, [512, 3, 2]],
62
+ [[-1, -3], 1, Concat, [1]], # 42-P5/32
63
+ [-1, 1, Conv, [256, 1, 1]],
64
+ [-2, 1, Conv, [256, 1, 1]],
65
+ [-1, 1, Conv, [256, 3, 1]],
66
+ [-1, 1, Conv, [256, 3, 1]],
67
+ [-1, 1, Conv, [256, 3, 1]],
68
+ [-1, 1, Conv, [256, 3, 1]],
69
+ [[-1, -3, -5, -6], 1, Concat, [1]],
70
+ [-1, 1, Conv, [1024, 1, 1]], # 50
71
+ ]
72
+
73
+ # yolov7 head
74
+ head:
75
+ [[-1, 1, SPPCSPC, [512]], # 51
76
+
77
+ [-1, 1, Conv, [256, 1, 1]],
78
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
79
+ [37, 1, Conv, [256, 1, 1]], # route backbone P4
80
+ [[-1, -2], 1, Concat, [1]],
81
+
82
+ [-1, 1, Conv, [256, 1, 1]],
83
+ [-2, 1, Conv, [256, 1, 1]],
84
+ [-1, 1, Conv, [128, 3, 1]],
85
+ [-1, 1, Conv, [128, 3, 1]],
86
+ [-1, 1, Conv, [128, 3, 1]],
87
+ [-1, 1, Conv, [128, 3, 1]],
88
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
89
+ [-1, 1, Conv, [256, 1, 1]], # 63
90
+
91
+ [-1, 1, Conv, [128, 1, 1]],
92
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
93
+ [24, 1, Conv, [128, 1, 1]], # route backbone P3
94
+ [[-1, -2], 1, Concat, [1]],
95
+
96
+ [-1, 1, Conv, [128, 1, 1]],
97
+ [-2, 1, Conv, [128, 1, 1]],
98
+ [-1, 1, Conv, [64, 3, 1]],
99
+ [-1, 1, Conv, [64, 3, 1]],
100
+ [-1, 1, Conv, [64, 3, 1]],
101
+ [-1, 1, Conv, [64, 3, 1]],
102
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
103
+ [-1, 1, Conv, [128, 1, 1]], # 75
104
+
105
+ [-1, 1, MP, []],
106
+ [-1, 1, Conv, [128, 1, 1]],
107
+ [-3, 1, Conv, [128, 1, 1]],
108
+ [-1, 1, Conv, [128, 3, 2]],
109
+ [[-1, -3, 63], 1, Concat, [1]],
110
+
111
+ [-1, 1, Conv, [256, 1, 1]],
112
+ [-2, 1, Conv, [256, 1, 1]],
113
+ [-1, 1, Conv, [128, 3, 1]],
114
+ [-1, 1, Conv, [128, 3, 1]],
115
+ [-1, 1, Conv, [128, 3, 1]],
116
+ [-1, 1, Conv, [128, 3, 1]],
117
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
118
+ [-1, 1, Conv, [256, 1, 1]], # 88
119
+
120
+ [-1, 1, MP, []],
121
+ [-1, 1, Conv, [256, 1, 1]],
122
+ [-3, 1, Conv, [256, 1, 1]],
123
+ [-1, 1, Conv, [256, 3, 2]],
124
+ [[-1, -3, 51], 1, Concat, [1]],
125
+
126
+ [-1, 1, Conv, [512, 1, 1]],
127
+ [-2, 1, Conv, [512, 1, 1]],
128
+ [-1, 1, Conv, [256, 3, 1]],
129
+ [-1, 1, Conv, [256, 3, 1]],
130
+ [-1, 1, Conv, [256, 3, 1]],
131
+ [-1, 1, Conv, [256, 3, 1]],
132
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
133
+ [-1, 1, Conv, [512, 1, 1]], # 101
134
+
135
+ [75, 1, RepConv, [256, 3, 1]],
136
+ [88, 1, RepConv, [512, 3, 1]],
137
+ [101, 1, RepConv, [1024, 3, 1]],
138
+
139
+ [[102,103,104], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
140
+ ]
detection/cfg/deploy/yolov7x.yaml ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # yolov7x backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [40, 3, 1]], # 0
16
+
17
+ [-1, 1, Conv, [80, 3, 2]], # 1-P1/2
18
+ [-1, 1, Conv, [80, 3, 1]],
19
+
20
+ [-1, 1, Conv, [160, 3, 2]], # 3-P2/4
21
+ [-1, 1, Conv, [64, 1, 1]],
22
+ [-2, 1, Conv, [64, 1, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [-1, 1, Conv, [64, 3, 1]],
29
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
30
+ [-1, 1, Conv, [320, 1, 1]], # 13
31
+
32
+ [-1, 1, MP, []],
33
+ [-1, 1, Conv, [160, 1, 1]],
34
+ [-3, 1, Conv, [160, 1, 1]],
35
+ [-1, 1, Conv, [160, 3, 2]],
36
+ [[-1, -3], 1, Concat, [1]], # 18-P3/8
37
+ [-1, 1, Conv, [128, 1, 1]],
38
+ [-2, 1, Conv, [128, 1, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [-1, 1, Conv, [128, 3, 1]],
41
+ [-1, 1, Conv, [128, 3, 1]],
42
+ [-1, 1, Conv, [128, 3, 1]],
43
+ [-1, 1, Conv, [128, 3, 1]],
44
+ [-1, 1, Conv, [128, 3, 1]],
45
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
46
+ [-1, 1, Conv, [640, 1, 1]], # 28
47
+
48
+ [-1, 1, MP, []],
49
+ [-1, 1, Conv, [320, 1, 1]],
50
+ [-3, 1, Conv, [320, 1, 1]],
51
+ [-1, 1, Conv, [320, 3, 2]],
52
+ [[-1, -3], 1, Concat, [1]], # 33-P4/16
53
+ [-1, 1, Conv, [256, 1, 1]],
54
+ [-2, 1, Conv, [256, 1, 1]],
55
+ [-1, 1, Conv, [256, 3, 1]],
56
+ [-1, 1, Conv, [256, 3, 1]],
57
+ [-1, 1, Conv, [256, 3, 1]],
58
+ [-1, 1, Conv, [256, 3, 1]],
59
+ [-1, 1, Conv, [256, 3, 1]],
60
+ [-1, 1, Conv, [256, 3, 1]],
61
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
62
+ [-1, 1, Conv, [1280, 1, 1]], # 43
63
+
64
+ [-1, 1, MP, []],
65
+ [-1, 1, Conv, [640, 1, 1]],
66
+ [-3, 1, Conv, [640, 1, 1]],
67
+ [-1, 1, Conv, [640, 3, 2]],
68
+ [[-1, -3], 1, Concat, [1]], # 48-P5/32
69
+ [-1, 1, Conv, [256, 1, 1]],
70
+ [-2, 1, Conv, [256, 1, 1]],
71
+ [-1, 1, Conv, [256, 3, 1]],
72
+ [-1, 1, Conv, [256, 3, 1]],
73
+ [-1, 1, Conv, [256, 3, 1]],
74
+ [-1, 1, Conv, [256, 3, 1]],
75
+ [-1, 1, Conv, [256, 3, 1]],
76
+ [-1, 1, Conv, [256, 3, 1]],
77
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
78
+ [-1, 1, Conv, [1280, 1, 1]], # 58
79
+ ]
80
+
81
+ # yolov7x head
82
+ head:
83
+ [[-1, 1, SPPCSPC, [640]], # 59
84
+
85
+ [-1, 1, Conv, [320, 1, 1]],
86
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
87
+ [43, 1, Conv, [320, 1, 1]], # route backbone P4
88
+ [[-1, -2], 1, Concat, [1]],
89
+
90
+ [-1, 1, Conv, [256, 1, 1]],
91
+ [-2, 1, Conv, [256, 1, 1]],
92
+ [-1, 1, Conv, [256, 3, 1]],
93
+ [-1, 1, Conv, [256, 3, 1]],
94
+ [-1, 1, Conv, [256, 3, 1]],
95
+ [-1, 1, Conv, [256, 3, 1]],
96
+ [-1, 1, Conv, [256, 3, 1]],
97
+ [-1, 1, Conv, [256, 3, 1]],
98
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
99
+ [-1, 1, Conv, [320, 1, 1]], # 73
100
+
101
+ [-1, 1, Conv, [160, 1, 1]],
102
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
103
+ [28, 1, Conv, [160, 1, 1]], # route backbone P3
104
+ [[-1, -2], 1, Concat, [1]],
105
+
106
+ [-1, 1, Conv, [128, 1, 1]],
107
+ [-2, 1, Conv, [128, 1, 1]],
108
+ [-1, 1, Conv, [128, 3, 1]],
109
+ [-1, 1, Conv, [128, 3, 1]],
110
+ [-1, 1, Conv, [128, 3, 1]],
111
+ [-1, 1, Conv, [128, 3, 1]],
112
+ [-1, 1, Conv, [128, 3, 1]],
113
+ [-1, 1, Conv, [128, 3, 1]],
114
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
115
+ [-1, 1, Conv, [160, 1, 1]], # 87
116
+
117
+ [-1, 1, MP, []],
118
+ [-1, 1, Conv, [160, 1, 1]],
119
+ [-3, 1, Conv, [160, 1, 1]],
120
+ [-1, 1, Conv, [160, 3, 2]],
121
+ [[-1, -3, 73], 1, Concat, [1]],
122
+
123
+ [-1, 1, Conv, [256, 1, 1]],
124
+ [-2, 1, Conv, [256, 1, 1]],
125
+ [-1, 1, Conv, [256, 3, 1]],
126
+ [-1, 1, Conv, [256, 3, 1]],
127
+ [-1, 1, Conv, [256, 3, 1]],
128
+ [-1, 1, Conv, [256, 3, 1]],
129
+ [-1, 1, Conv, [256, 3, 1]],
130
+ [-1, 1, Conv, [256, 3, 1]],
131
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
132
+ [-1, 1, Conv, [320, 1, 1]], # 102
133
+
134
+ [-1, 1, MP, []],
135
+ [-1, 1, Conv, [320, 1, 1]],
136
+ [-3, 1, Conv, [320, 1, 1]],
137
+ [-1, 1, Conv, [320, 3, 2]],
138
+ [[-1, -3, 59], 1, Concat, [1]],
139
+
140
+ [-1, 1, Conv, [512, 1, 1]],
141
+ [-2, 1, Conv, [512, 1, 1]],
142
+ [-1, 1, Conv, [512, 3, 1]],
143
+ [-1, 1, Conv, [512, 3, 1]],
144
+ [-1, 1, Conv, [512, 3, 1]],
145
+ [-1, 1, Conv, [512, 3, 1]],
146
+ [-1, 1, Conv, [512, 3, 1]],
147
+ [-1, 1, Conv, [512, 3, 1]],
148
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
149
+ [-1, 1, Conv, [640, 1, 1]], # 117
150
+
151
+ [87, 1, Conv, [320, 3, 1]],
152
+ [102, 1, Conv, [640, 3, 1]],
153
+ [117, 1, Conv, [1280, 3, 1]],
154
+
155
+ [[118,119,120], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
156
+ ]
detection/cfg/training/yolov7-d6.yaml ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7 backbone
14
+ backbone:
15
+ # [from, number, module, args],
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [96, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, DownC, [192]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [-1, 1, Conv, [64, 3, 1]],
29
+ [-1, 1, Conv, [64, 3, 1]],
30
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
31
+ [-1, 1, Conv, [192, 1, 1]], # 14
32
+
33
+ [-1, 1, DownC, [384]], # 15-P3/8
34
+ [-1, 1, Conv, [128, 1, 1]],
35
+ [-2, 1, Conv, [128, 1, 1]],
36
+ [-1, 1, Conv, [128, 3, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [-1, 1, Conv, [128, 3, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [-1, 1, Conv, [128, 3, 1]],
41
+ [-1, 1, Conv, [128, 3, 1]],
42
+ [-1, 1, Conv, [128, 3, 1]],
43
+ [-1, 1, Conv, [128, 3, 1]],
44
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
45
+ [-1, 1, Conv, [384, 1, 1]], # 27
46
+
47
+ [-1, 1, DownC, [768]], # 28-P4/16
48
+ [-1, 1, Conv, [256, 1, 1]],
49
+ [-2, 1, Conv, [256, 1, 1]],
50
+ [-1, 1, Conv, [256, 3, 1]],
51
+ [-1, 1, Conv, [256, 3, 1]],
52
+ [-1, 1, Conv, [256, 3, 1]],
53
+ [-1, 1, Conv, [256, 3, 1]],
54
+ [-1, 1, Conv, [256, 3, 1]],
55
+ [-1, 1, Conv, [256, 3, 1]],
56
+ [-1, 1, Conv, [256, 3, 1]],
57
+ [-1, 1, Conv, [256, 3, 1]],
58
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
59
+ [-1, 1, Conv, [768, 1, 1]], # 40
60
+
61
+ [-1, 1, DownC, [1152]], # 41-P5/32
62
+ [-1, 1, Conv, [384, 1, 1]],
63
+ [-2, 1, Conv, [384, 1, 1]],
64
+ [-1, 1, Conv, [384, 3, 1]],
65
+ [-1, 1, Conv, [384, 3, 1]],
66
+ [-1, 1, Conv, [384, 3, 1]],
67
+ [-1, 1, Conv, [384, 3, 1]],
68
+ [-1, 1, Conv, [384, 3, 1]],
69
+ [-1, 1, Conv, [384, 3, 1]],
70
+ [-1, 1, Conv, [384, 3, 1]],
71
+ [-1, 1, Conv, [384, 3, 1]],
72
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
73
+ [-1, 1, Conv, [1152, 1, 1]], # 53
74
+
75
+ [-1, 1, DownC, [1536]], # 54-P6/64
76
+ [-1, 1, Conv, [512, 1, 1]],
77
+ [-2, 1, Conv, [512, 1, 1]],
78
+ [-1, 1, Conv, [512, 3, 1]],
79
+ [-1, 1, Conv, [512, 3, 1]],
80
+ [-1, 1, Conv, [512, 3, 1]],
81
+ [-1, 1, Conv, [512, 3, 1]],
82
+ [-1, 1, Conv, [512, 3, 1]],
83
+ [-1, 1, Conv, [512, 3, 1]],
84
+ [-1, 1, Conv, [512, 3, 1]],
85
+ [-1, 1, Conv, [512, 3, 1]],
86
+ [[-1, -3, -5, -7, -9, -10], 1, Concat, [1]],
87
+ [-1, 1, Conv, [1536, 1, 1]], # 66
88
+ ]
89
+
90
+ # yolov7 head
91
+ head:
92
+ [[-1, 1, SPPCSPC, [768]], # 67
93
+
94
+ [-1, 1, Conv, [576, 1, 1]],
95
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
96
+ [53, 1, Conv, [576, 1, 1]], # route backbone P5
97
+ [[-1, -2], 1, Concat, [1]],
98
+
99
+ [-1, 1, Conv, [384, 1, 1]],
100
+ [-2, 1, Conv, [384, 1, 1]],
101
+ [-1, 1, Conv, [192, 3, 1]],
102
+ [-1, 1, Conv, [192, 3, 1]],
103
+ [-1, 1, Conv, [192, 3, 1]],
104
+ [-1, 1, Conv, [192, 3, 1]],
105
+ [-1, 1, Conv, [192, 3, 1]],
106
+ [-1, 1, Conv, [192, 3, 1]],
107
+ [-1, 1, Conv, [192, 3, 1]],
108
+ [-1, 1, Conv, [192, 3, 1]],
109
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
110
+ [-1, 1, Conv, [576, 1, 1]], # 83
111
+
112
+ [-1, 1, Conv, [384, 1, 1]],
113
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
114
+ [40, 1, Conv, [384, 1, 1]], # route backbone P4
115
+ [[-1, -2], 1, Concat, [1]],
116
+
117
+ [-1, 1, Conv, [256, 1, 1]],
118
+ [-2, 1, Conv, [256, 1, 1]],
119
+ [-1, 1, Conv, [128, 3, 1]],
120
+ [-1, 1, Conv, [128, 3, 1]],
121
+ [-1, 1, Conv, [128, 3, 1]],
122
+ [-1, 1, Conv, [128, 3, 1]],
123
+ [-1, 1, Conv, [128, 3, 1]],
124
+ [-1, 1, Conv, [128, 3, 1]],
125
+ [-1, 1, Conv, [128, 3, 1]],
126
+ [-1, 1, Conv, [128, 3, 1]],
127
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
128
+ [-1, 1, Conv, [384, 1, 1]], # 99
129
+
130
+ [-1, 1, Conv, [192, 1, 1]],
131
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
132
+ [27, 1, Conv, [192, 1, 1]], # route backbone P3
133
+ [[-1, -2], 1, Concat, [1]],
134
+
135
+ [-1, 1, Conv, [128, 1, 1]],
136
+ [-2, 1, Conv, [128, 1, 1]],
137
+ [-1, 1, Conv, [64, 3, 1]],
138
+ [-1, 1, Conv, [64, 3, 1]],
139
+ [-1, 1, Conv, [64, 3, 1]],
140
+ [-1, 1, Conv, [64, 3, 1]],
141
+ [-1, 1, Conv, [64, 3, 1]],
142
+ [-1, 1, Conv, [64, 3, 1]],
143
+ [-1, 1, Conv, [64, 3, 1]],
144
+ [-1, 1, Conv, [64, 3, 1]],
145
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
146
+ [-1, 1, Conv, [192, 1, 1]], # 115
147
+
148
+ [-1, 1, DownC, [384]],
149
+ [[-1, 99], 1, Concat, [1]],
150
+
151
+ [-1, 1, Conv, [256, 1, 1]],
152
+ [-2, 1, Conv, [256, 1, 1]],
153
+ [-1, 1, Conv, [128, 3, 1]],
154
+ [-1, 1, Conv, [128, 3, 1]],
155
+ [-1, 1, Conv, [128, 3, 1]],
156
+ [-1, 1, Conv, [128, 3, 1]],
157
+ [-1, 1, Conv, [128, 3, 1]],
158
+ [-1, 1, Conv, [128, 3, 1]],
159
+ [-1, 1, Conv, [128, 3, 1]],
160
+ [-1, 1, Conv, [128, 3, 1]],
161
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
162
+ [-1, 1, Conv, [384, 1, 1]], # 129
163
+
164
+ [-1, 1, DownC, [576]],
165
+ [[-1, 83], 1, Concat, [1]],
166
+
167
+ [-1, 1, Conv, [384, 1, 1]],
168
+ [-2, 1, Conv, [384, 1, 1]],
169
+ [-1, 1, Conv, [192, 3, 1]],
170
+ [-1, 1, Conv, [192, 3, 1]],
171
+ [-1, 1, Conv, [192, 3, 1]],
172
+ [-1, 1, Conv, [192, 3, 1]],
173
+ [-1, 1, Conv, [192, 3, 1]],
174
+ [-1, 1, Conv, [192, 3, 1]],
175
+ [-1, 1, Conv, [192, 3, 1]],
176
+ [-1, 1, Conv, [192, 3, 1]],
177
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
178
+ [-1, 1, Conv, [576, 1, 1]], # 143
179
+
180
+ [-1, 1, DownC, [768]],
181
+ [[-1, 67], 1, Concat, [1]],
182
+
183
+ [-1, 1, Conv, [512, 1, 1]],
184
+ [-2, 1, Conv, [512, 1, 1]],
185
+ [-1, 1, Conv, [256, 3, 1]],
186
+ [-1, 1, Conv, [256, 3, 1]],
187
+ [-1, 1, Conv, [256, 3, 1]],
188
+ [-1, 1, Conv, [256, 3, 1]],
189
+ [-1, 1, Conv, [256, 3, 1]],
190
+ [-1, 1, Conv, [256, 3, 1]],
191
+ [-1, 1, Conv, [256, 3, 1]],
192
+ [-1, 1, Conv, [256, 3, 1]],
193
+ [[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10], 1, Concat, [1]],
194
+ [-1, 1, Conv, [768, 1, 1]], # 157
195
+
196
+ [115, 1, Conv, [384, 3, 1]],
197
+ [129, 1, Conv, [768, 3, 1]],
198
+ [143, 1, Conv, [1152, 3, 1]],
199
+ [157, 1, Conv, [1536, 3, 1]],
200
+
201
+ [115, 1, Conv, [384, 3, 1]],
202
+ [99, 1, Conv, [768, 3, 1]],
203
+ [83, 1, Conv, [1152, 3, 1]],
204
+ [67, 1, Conv, [1536, 3, 1]],
205
+
206
+ [[158,159,160,161,162,163,164,165], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
207
+ ]
detection/cfg/training/yolov7-e6.yaml ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7 backbone
14
+ backbone:
15
+ # [from, number, module, args],
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, DownC, [160]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
29
+ [-1, 1, Conv, [160, 1, 1]], # 12
30
+
31
+ [-1, 1, DownC, [320]], # 13-P3/8
32
+ [-1, 1, Conv, [128, 1, 1]],
33
+ [-2, 1, Conv, [128, 1, 1]],
34
+ [-1, 1, Conv, [128, 3, 1]],
35
+ [-1, 1, Conv, [128, 3, 1]],
36
+ [-1, 1, Conv, [128, 3, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [-1, 1, Conv, [128, 3, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
41
+ [-1, 1, Conv, [320, 1, 1]], # 23
42
+
43
+ [-1, 1, DownC, [640]], # 24-P4/16
44
+ [-1, 1, Conv, [256, 1, 1]],
45
+ [-2, 1, Conv, [256, 1, 1]],
46
+ [-1, 1, Conv, [256, 3, 1]],
47
+ [-1, 1, Conv, [256, 3, 1]],
48
+ [-1, 1, Conv, [256, 3, 1]],
49
+ [-1, 1, Conv, [256, 3, 1]],
50
+ [-1, 1, Conv, [256, 3, 1]],
51
+ [-1, 1, Conv, [256, 3, 1]],
52
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
53
+ [-1, 1, Conv, [640, 1, 1]], # 34
54
+
55
+ [-1, 1, DownC, [960]], # 35-P5/32
56
+ [-1, 1, Conv, [384, 1, 1]],
57
+ [-2, 1, Conv, [384, 1, 1]],
58
+ [-1, 1, Conv, [384, 3, 1]],
59
+ [-1, 1, Conv, [384, 3, 1]],
60
+ [-1, 1, Conv, [384, 3, 1]],
61
+ [-1, 1, Conv, [384, 3, 1]],
62
+ [-1, 1, Conv, [384, 3, 1]],
63
+ [-1, 1, Conv, [384, 3, 1]],
64
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
65
+ [-1, 1, Conv, [960, 1, 1]], # 45
66
+
67
+ [-1, 1, DownC, [1280]], # 46-P6/64
68
+ [-1, 1, Conv, [512, 1, 1]],
69
+ [-2, 1, Conv, [512, 1, 1]],
70
+ [-1, 1, Conv, [512, 3, 1]],
71
+ [-1, 1, Conv, [512, 3, 1]],
72
+ [-1, 1, Conv, [512, 3, 1]],
73
+ [-1, 1, Conv, [512, 3, 1]],
74
+ [-1, 1, Conv, [512, 3, 1]],
75
+ [-1, 1, Conv, [512, 3, 1]],
76
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
77
+ [-1, 1, Conv, [1280, 1, 1]], # 56
78
+ ]
79
+
80
+ # yolov7 head
81
+ head:
82
+ [[-1, 1, SPPCSPC, [640]], # 57
83
+
84
+ [-1, 1, Conv, [480, 1, 1]],
85
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
86
+ [45, 1, Conv, [480, 1, 1]], # route backbone P5
87
+ [[-1, -2], 1, Concat, [1]],
88
+
89
+ [-1, 1, Conv, [384, 1, 1]],
90
+ [-2, 1, Conv, [384, 1, 1]],
91
+ [-1, 1, Conv, [192, 3, 1]],
92
+ [-1, 1, Conv, [192, 3, 1]],
93
+ [-1, 1, Conv, [192, 3, 1]],
94
+ [-1, 1, Conv, [192, 3, 1]],
95
+ [-1, 1, Conv, [192, 3, 1]],
96
+ [-1, 1, Conv, [192, 3, 1]],
97
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
98
+ [-1, 1, Conv, [480, 1, 1]], # 71
99
+
100
+ [-1, 1, Conv, [320, 1, 1]],
101
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
102
+ [34, 1, Conv, [320, 1, 1]], # route backbone P4
103
+ [[-1, -2], 1, Concat, [1]],
104
+
105
+ [-1, 1, Conv, [256, 1, 1]],
106
+ [-2, 1, Conv, [256, 1, 1]],
107
+ [-1, 1, Conv, [128, 3, 1]],
108
+ [-1, 1, Conv, [128, 3, 1]],
109
+ [-1, 1, Conv, [128, 3, 1]],
110
+ [-1, 1, Conv, [128, 3, 1]],
111
+ [-1, 1, Conv, [128, 3, 1]],
112
+ [-1, 1, Conv, [128, 3, 1]],
113
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
114
+ [-1, 1, Conv, [320, 1, 1]], # 85
115
+
116
+ [-1, 1, Conv, [160, 1, 1]],
117
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
118
+ [23, 1, Conv, [160, 1, 1]], # route backbone P3
119
+ [[-1, -2], 1, Concat, [1]],
120
+
121
+ [-1, 1, Conv, [128, 1, 1]],
122
+ [-2, 1, Conv, [128, 1, 1]],
123
+ [-1, 1, Conv, [64, 3, 1]],
124
+ [-1, 1, Conv, [64, 3, 1]],
125
+ [-1, 1, Conv, [64, 3, 1]],
126
+ [-1, 1, Conv, [64, 3, 1]],
127
+ [-1, 1, Conv, [64, 3, 1]],
128
+ [-1, 1, Conv, [64, 3, 1]],
129
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
130
+ [-1, 1, Conv, [160, 1, 1]], # 99
131
+
132
+ [-1, 1, DownC, [320]],
133
+ [[-1, 85], 1, Concat, [1]],
134
+
135
+ [-1, 1, Conv, [256, 1, 1]],
136
+ [-2, 1, Conv, [256, 1, 1]],
137
+ [-1, 1, Conv, [128, 3, 1]],
138
+ [-1, 1, Conv, [128, 3, 1]],
139
+ [-1, 1, Conv, [128, 3, 1]],
140
+ [-1, 1, Conv, [128, 3, 1]],
141
+ [-1, 1, Conv, [128, 3, 1]],
142
+ [-1, 1, Conv, [128, 3, 1]],
143
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
144
+ [-1, 1, Conv, [320, 1, 1]], # 111
145
+
146
+ [-1, 1, DownC, [480]],
147
+ [[-1, 71], 1, Concat, [1]],
148
+
149
+ [-1, 1, Conv, [384, 1, 1]],
150
+ [-2, 1, Conv, [384, 1, 1]],
151
+ [-1, 1, Conv, [192, 3, 1]],
152
+ [-1, 1, Conv, [192, 3, 1]],
153
+ [-1, 1, Conv, [192, 3, 1]],
154
+ [-1, 1, Conv, [192, 3, 1]],
155
+ [-1, 1, Conv, [192, 3, 1]],
156
+ [-1, 1, Conv, [192, 3, 1]],
157
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
158
+ [-1, 1, Conv, [480, 1, 1]], # 123
159
+
160
+ [-1, 1, DownC, [640]],
161
+ [[-1, 57], 1, Concat, [1]],
162
+
163
+ [-1, 1, Conv, [512, 1, 1]],
164
+ [-2, 1, Conv, [512, 1, 1]],
165
+ [-1, 1, Conv, [256, 3, 1]],
166
+ [-1, 1, Conv, [256, 3, 1]],
167
+ [-1, 1, Conv, [256, 3, 1]],
168
+ [-1, 1, Conv, [256, 3, 1]],
169
+ [-1, 1, Conv, [256, 3, 1]],
170
+ [-1, 1, Conv, [256, 3, 1]],
171
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
172
+ [-1, 1, Conv, [640, 1, 1]], # 135
173
+
174
+ [99, 1, Conv, [320, 3, 1]],
175
+ [111, 1, Conv, [640, 3, 1]],
176
+ [123, 1, Conv, [960, 3, 1]],
177
+ [135, 1, Conv, [1280, 3, 1]],
178
+
179
+ [99, 1, Conv, [320, 3, 1]],
180
+ [85, 1, Conv, [640, 3, 1]],
181
+ [71, 1, Conv, [960, 3, 1]],
182
+ [57, 1, Conv, [1280, 3, 1]],
183
+
184
+ [[136,137,138,139,140,141,142,143], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
185
+ ]
detection/cfg/training/yolov7-e6e.yaml ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7 backbone
14
+ backbone:
15
+ # [from, number, module, args],
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [80, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, DownC, [160]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
29
+ [-1, 1, Conv, [160, 1, 1]], # 12
30
+ [-11, 1, Conv, [64, 1, 1]],
31
+ [-12, 1, Conv, [64, 1, 1]],
32
+ [-1, 1, Conv, [64, 3, 1]],
33
+ [-1, 1, Conv, [64, 3, 1]],
34
+ [-1, 1, Conv, [64, 3, 1]],
35
+ [-1, 1, Conv, [64, 3, 1]],
36
+ [-1, 1, Conv, [64, 3, 1]],
37
+ [-1, 1, Conv, [64, 3, 1]],
38
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
39
+ [-1, 1, Conv, [160, 1, 1]], # 22
40
+ [[-1, -11], 1, Shortcut, [1]], # 23
41
+
42
+ [-1, 1, DownC, [320]], # 24-P3/8
43
+ [-1, 1, Conv, [128, 1, 1]],
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, Conv, [128, 3, 1]],
46
+ [-1, 1, Conv, [128, 3, 1]],
47
+ [-1, 1, Conv, [128, 3, 1]],
48
+ [-1, 1, Conv, [128, 3, 1]],
49
+ [-1, 1, Conv, [128, 3, 1]],
50
+ [-1, 1, Conv, [128, 3, 1]],
51
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
52
+ [-1, 1, Conv, [320, 1, 1]], # 34
53
+ [-11, 1, Conv, [128, 1, 1]],
54
+ [-12, 1, Conv, [128, 1, 1]],
55
+ [-1, 1, Conv, [128, 3, 1]],
56
+ [-1, 1, Conv, [128, 3, 1]],
57
+ [-1, 1, Conv, [128, 3, 1]],
58
+ [-1, 1, Conv, [128, 3, 1]],
59
+ [-1, 1, Conv, [128, 3, 1]],
60
+ [-1, 1, Conv, [128, 3, 1]],
61
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
62
+ [-1, 1, Conv, [320, 1, 1]], # 44
63
+ [[-1, -11], 1, Shortcut, [1]], # 45
64
+
65
+ [-1, 1, DownC, [640]], # 46-P4/16
66
+ [-1, 1, Conv, [256, 1, 1]],
67
+ [-2, 1, Conv, [256, 1, 1]],
68
+ [-1, 1, Conv, [256, 3, 1]],
69
+ [-1, 1, Conv, [256, 3, 1]],
70
+ [-1, 1, Conv, [256, 3, 1]],
71
+ [-1, 1, Conv, [256, 3, 1]],
72
+ [-1, 1, Conv, [256, 3, 1]],
73
+ [-1, 1, Conv, [256, 3, 1]],
74
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
75
+ [-1, 1, Conv, [640, 1, 1]], # 56
76
+ [-11, 1, Conv, [256, 1, 1]],
77
+ [-12, 1, Conv, [256, 1, 1]],
78
+ [-1, 1, Conv, [256, 3, 1]],
79
+ [-1, 1, Conv, [256, 3, 1]],
80
+ [-1, 1, Conv, [256, 3, 1]],
81
+ [-1, 1, Conv, [256, 3, 1]],
82
+ [-1, 1, Conv, [256, 3, 1]],
83
+ [-1, 1, Conv, [256, 3, 1]],
84
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
85
+ [-1, 1, Conv, [640, 1, 1]], # 66
86
+ [[-1, -11], 1, Shortcut, [1]], # 67
87
+
88
+ [-1, 1, DownC, [960]], # 68-P5/32
89
+ [-1, 1, Conv, [384, 1, 1]],
90
+ [-2, 1, Conv, [384, 1, 1]],
91
+ [-1, 1, Conv, [384, 3, 1]],
92
+ [-1, 1, Conv, [384, 3, 1]],
93
+ [-1, 1, Conv, [384, 3, 1]],
94
+ [-1, 1, Conv, [384, 3, 1]],
95
+ [-1, 1, Conv, [384, 3, 1]],
96
+ [-1, 1, Conv, [384, 3, 1]],
97
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
98
+ [-1, 1, Conv, [960, 1, 1]], # 78
99
+ [-11, 1, Conv, [384, 1, 1]],
100
+ [-12, 1, Conv, [384, 1, 1]],
101
+ [-1, 1, Conv, [384, 3, 1]],
102
+ [-1, 1, Conv, [384, 3, 1]],
103
+ [-1, 1, Conv, [384, 3, 1]],
104
+ [-1, 1, Conv, [384, 3, 1]],
105
+ [-1, 1, Conv, [384, 3, 1]],
106
+ [-1, 1, Conv, [384, 3, 1]],
107
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
108
+ [-1, 1, Conv, [960, 1, 1]], # 88
109
+ [[-1, -11], 1, Shortcut, [1]], # 89
110
+
111
+ [-1, 1, DownC, [1280]], # 90-P6/64
112
+ [-1, 1, Conv, [512, 1, 1]],
113
+ [-2, 1, Conv, [512, 1, 1]],
114
+ [-1, 1, Conv, [512, 3, 1]],
115
+ [-1, 1, Conv, [512, 3, 1]],
116
+ [-1, 1, Conv, [512, 3, 1]],
117
+ [-1, 1, Conv, [512, 3, 1]],
118
+ [-1, 1, Conv, [512, 3, 1]],
119
+ [-1, 1, Conv, [512, 3, 1]],
120
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
121
+ [-1, 1, Conv, [1280, 1, 1]], # 100
122
+ [-11, 1, Conv, [512, 1, 1]],
123
+ [-12, 1, Conv, [512, 1, 1]],
124
+ [-1, 1, Conv, [512, 3, 1]],
125
+ [-1, 1, Conv, [512, 3, 1]],
126
+ [-1, 1, Conv, [512, 3, 1]],
127
+ [-1, 1, Conv, [512, 3, 1]],
128
+ [-1, 1, Conv, [512, 3, 1]],
129
+ [-1, 1, Conv, [512, 3, 1]],
130
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
131
+ [-1, 1, Conv, [1280, 1, 1]], # 110
132
+ [[-1, -11], 1, Shortcut, [1]], # 111
133
+ ]
134
+
135
+ # yolov7 head
136
+ head:
137
+ [[-1, 1, SPPCSPC, [640]], # 112
138
+
139
+ [-1, 1, Conv, [480, 1, 1]],
140
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
141
+ [89, 1, Conv, [480, 1, 1]], # route backbone P5
142
+ [[-1, -2], 1, Concat, [1]],
143
+
144
+ [-1, 1, Conv, [384, 1, 1]],
145
+ [-2, 1, Conv, [384, 1, 1]],
146
+ [-1, 1, Conv, [192, 3, 1]],
147
+ [-1, 1, Conv, [192, 3, 1]],
148
+ [-1, 1, Conv, [192, 3, 1]],
149
+ [-1, 1, Conv, [192, 3, 1]],
150
+ [-1, 1, Conv, [192, 3, 1]],
151
+ [-1, 1, Conv, [192, 3, 1]],
152
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
153
+ [-1, 1, Conv, [480, 1, 1]], # 126
154
+ [-11, 1, Conv, [384, 1, 1]],
155
+ [-12, 1, Conv, [384, 1, 1]],
156
+ [-1, 1, Conv, [192, 3, 1]],
157
+ [-1, 1, Conv, [192, 3, 1]],
158
+ [-1, 1, Conv, [192, 3, 1]],
159
+ [-1, 1, Conv, [192, 3, 1]],
160
+ [-1, 1, Conv, [192, 3, 1]],
161
+ [-1, 1, Conv, [192, 3, 1]],
162
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
163
+ [-1, 1, Conv, [480, 1, 1]], # 136
164
+ [[-1, -11], 1, Shortcut, [1]], # 137
165
+
166
+ [-1, 1, Conv, [320, 1, 1]],
167
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
168
+ [67, 1, Conv, [320, 1, 1]], # route backbone P4
169
+ [[-1, -2], 1, Concat, [1]],
170
+
171
+ [-1, 1, Conv, [256, 1, 1]],
172
+ [-2, 1, Conv, [256, 1, 1]],
173
+ [-1, 1, Conv, [128, 3, 1]],
174
+ [-1, 1, Conv, [128, 3, 1]],
175
+ [-1, 1, Conv, [128, 3, 1]],
176
+ [-1, 1, Conv, [128, 3, 1]],
177
+ [-1, 1, Conv, [128, 3, 1]],
178
+ [-1, 1, Conv, [128, 3, 1]],
179
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
180
+ [-1, 1, Conv, [320, 1, 1]], # 151
181
+ [-11, 1, Conv, [256, 1, 1]],
182
+ [-12, 1, Conv, [256, 1, 1]],
183
+ [-1, 1, Conv, [128, 3, 1]],
184
+ [-1, 1, Conv, [128, 3, 1]],
185
+ [-1, 1, Conv, [128, 3, 1]],
186
+ [-1, 1, Conv, [128, 3, 1]],
187
+ [-1, 1, Conv, [128, 3, 1]],
188
+ [-1, 1, Conv, [128, 3, 1]],
189
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
190
+ [-1, 1, Conv, [320, 1, 1]], # 161
191
+ [[-1, -11], 1, Shortcut, [1]], # 162
192
+
193
+ [-1, 1, Conv, [160, 1, 1]],
194
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
195
+ [45, 1, Conv, [160, 1, 1]], # route backbone P3
196
+ [[-1, -2], 1, Concat, [1]],
197
+
198
+ [-1, 1, Conv, [128, 1, 1]],
199
+ [-2, 1, Conv, [128, 1, 1]],
200
+ [-1, 1, Conv, [64, 3, 1]],
201
+ [-1, 1, Conv, [64, 3, 1]],
202
+ [-1, 1, Conv, [64, 3, 1]],
203
+ [-1, 1, Conv, [64, 3, 1]],
204
+ [-1, 1, Conv, [64, 3, 1]],
205
+ [-1, 1, Conv, [64, 3, 1]],
206
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
207
+ [-1, 1, Conv, [160, 1, 1]], # 176
208
+ [-11, 1, Conv, [128, 1, 1]],
209
+ [-12, 1, Conv, [128, 1, 1]],
210
+ [-1, 1, Conv, [64, 3, 1]],
211
+ [-1, 1, Conv, [64, 3, 1]],
212
+ [-1, 1, Conv, [64, 3, 1]],
213
+ [-1, 1, Conv, [64, 3, 1]],
214
+ [-1, 1, Conv, [64, 3, 1]],
215
+ [-1, 1, Conv, [64, 3, 1]],
216
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
217
+ [-1, 1, Conv, [160, 1, 1]], # 186
218
+ [[-1, -11], 1, Shortcut, [1]], # 187
219
+
220
+ [-1, 1, DownC, [320]],
221
+ [[-1, 162], 1, Concat, [1]],
222
+
223
+ [-1, 1, Conv, [256, 1, 1]],
224
+ [-2, 1, Conv, [256, 1, 1]],
225
+ [-1, 1, Conv, [128, 3, 1]],
226
+ [-1, 1, Conv, [128, 3, 1]],
227
+ [-1, 1, Conv, [128, 3, 1]],
228
+ [-1, 1, Conv, [128, 3, 1]],
229
+ [-1, 1, Conv, [128, 3, 1]],
230
+ [-1, 1, Conv, [128, 3, 1]],
231
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
232
+ [-1, 1, Conv, [320, 1, 1]], # 199
233
+ [-11, 1, Conv, [256, 1, 1]],
234
+ [-12, 1, Conv, [256, 1, 1]],
235
+ [-1, 1, Conv, [128, 3, 1]],
236
+ [-1, 1, Conv, [128, 3, 1]],
237
+ [-1, 1, Conv, [128, 3, 1]],
238
+ [-1, 1, Conv, [128, 3, 1]],
239
+ [-1, 1, Conv, [128, 3, 1]],
240
+ [-1, 1, Conv, [128, 3, 1]],
241
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
242
+ [-1, 1, Conv, [320, 1, 1]], # 209
243
+ [[-1, -11], 1, Shortcut, [1]], # 210
244
+
245
+ [-1, 1, DownC, [480]],
246
+ [[-1, 137], 1, Concat, [1]],
247
+
248
+ [-1, 1, Conv, [384, 1, 1]],
249
+ [-2, 1, Conv, [384, 1, 1]],
250
+ [-1, 1, Conv, [192, 3, 1]],
251
+ [-1, 1, Conv, [192, 3, 1]],
252
+ [-1, 1, Conv, [192, 3, 1]],
253
+ [-1, 1, Conv, [192, 3, 1]],
254
+ [-1, 1, Conv, [192, 3, 1]],
255
+ [-1, 1, Conv, [192, 3, 1]],
256
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
257
+ [-1, 1, Conv, [480, 1, 1]], # 222
258
+ [-11, 1, Conv, [384, 1, 1]],
259
+ [-12, 1, Conv, [384, 1, 1]],
260
+ [-1, 1, Conv, [192, 3, 1]],
261
+ [-1, 1, Conv, [192, 3, 1]],
262
+ [-1, 1, Conv, [192, 3, 1]],
263
+ [-1, 1, Conv, [192, 3, 1]],
264
+ [-1, 1, Conv, [192, 3, 1]],
265
+ [-1, 1, Conv, [192, 3, 1]],
266
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
267
+ [-1, 1, Conv, [480, 1, 1]], # 232
268
+ [[-1, -11], 1, Shortcut, [1]], # 233
269
+
270
+ [-1, 1, DownC, [640]],
271
+ [[-1, 112], 1, Concat, [1]],
272
+
273
+ [-1, 1, Conv, [512, 1, 1]],
274
+ [-2, 1, Conv, [512, 1, 1]],
275
+ [-1, 1, Conv, [256, 3, 1]],
276
+ [-1, 1, Conv, [256, 3, 1]],
277
+ [-1, 1, Conv, [256, 3, 1]],
278
+ [-1, 1, Conv, [256, 3, 1]],
279
+ [-1, 1, Conv, [256, 3, 1]],
280
+ [-1, 1, Conv, [256, 3, 1]],
281
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
282
+ [-1, 1, Conv, [640, 1, 1]], # 245
283
+ [-11, 1, Conv, [512, 1, 1]],
284
+ [-12, 1, Conv, [512, 1, 1]],
285
+ [-1, 1, Conv, [256, 3, 1]],
286
+ [-1, 1, Conv, [256, 3, 1]],
287
+ [-1, 1, Conv, [256, 3, 1]],
288
+ [-1, 1, Conv, [256, 3, 1]],
289
+ [-1, 1, Conv, [256, 3, 1]],
290
+ [-1, 1, Conv, [256, 3, 1]],
291
+ [[-1, -2, -3, -4, -5, -6, -7, -8], 1, Concat, [1]],
292
+ [-1, 1, Conv, [640, 1, 1]], # 255
293
+ [[-1, -11], 1, Shortcut, [1]], # 256
294
+
295
+ [187, 1, Conv, [320, 3, 1]],
296
+ [210, 1, Conv, [640, 3, 1]],
297
+ [233, 1, Conv, [960, 3, 1]],
298
+ [256, 1, Conv, [1280, 3, 1]],
299
+
300
+ [186, 1, Conv, [320, 3, 1]],
301
+ [161, 1, Conv, [640, 3, 1]],
302
+ [136, 1, Conv, [960, 3, 1]],
303
+ [112, 1, Conv, [1280, 3, 1]],
304
+
305
+ [[257,258,259,260,261,262,263,264], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
306
+ ]
detection/cfg/training/yolov7-tiny.yaml ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # yolov7-tiny backbone
13
+ backbone:
14
+ # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
15
+ [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 0-P1/2
16
+
17
+ [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]], # 1-P2/4
18
+
19
+ [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
20
+ [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
21
+ [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
22
+ [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
23
+ [[-1, -2, -3, -4], 1, Concat, [1]],
24
+ [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 7
25
+
26
+ [-1, 1, MP, []], # 8-P3/8
27
+ [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
28
+ [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
29
+ [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
30
+ [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
31
+ [[-1, -2, -3, -4], 1, Concat, [1]],
32
+ [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 14
33
+
34
+ [-1, 1, MP, []], # 15-P4/16
35
+ [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
36
+ [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
37
+ [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
38
+ [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
39
+ [[-1, -2, -3, -4], 1, Concat, [1]],
40
+ [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 21
41
+
42
+ [-1, 1, MP, []], # 22-P5/32
43
+ [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
44
+ [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
45
+ [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
46
+ [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
47
+ [[-1, -2, -3, -4], 1, Concat, [1]],
48
+ [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 28
49
+ ]
50
+
51
+ # yolov7-tiny head
52
+ head:
53
+ [[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
54
+ [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
55
+ [-1, 1, SP, [5]],
56
+ [-2, 1, SP, [9]],
57
+ [-3, 1, SP, [13]],
58
+ [[-1, -2, -3, -4], 1, Concat, [1]],
59
+ [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
60
+ [[-1, -7], 1, Concat, [1]],
61
+ [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 37
62
+
63
+ [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
64
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
65
+ [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
66
+ [[-1, -2], 1, Concat, [1]],
67
+
68
+ [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
69
+ [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
70
+ [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
71
+ [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
72
+ [[-1, -2, -3, -4], 1, Concat, [1]],
73
+ [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 47
74
+
75
+ [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
76
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
77
+ [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
78
+ [[-1, -2], 1, Concat, [1]],
79
+
80
+ [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
81
+ [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
82
+ [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
83
+ [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
84
+ [[-1, -2, -3, -4], 1, Concat, [1]],
85
+ [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 57
86
+
87
+ [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
88
+ [[-1, 47], 1, Concat, [1]],
89
+
90
+ [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
91
+ [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
92
+ [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
93
+ [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
94
+ [[-1, -2, -3, -4], 1, Concat, [1]],
95
+ [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 65
96
+
97
+ [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
98
+ [[-1, 37], 1, Concat, [1]],
99
+
100
+ [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
101
+ [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
102
+ [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
103
+ [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
104
+ [[-1, -2, -3, -4], 1, Concat, [1]],
105
+ [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # 73
106
+
107
+ [57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
108
+ [65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
109
+ [73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
110
+
111
+ [[74,75,76], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
112
+ ]
detection/cfg/training/yolov7-w6.yaml ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [ 19,27, 44,40, 38,94 ] # P3/8
9
+ - [ 96,68, 86,152, 180,137 ] # P4/16
10
+ - [ 140,301, 303,264, 238,542 ] # P5/32
11
+ - [ 436,615, 739,380, 925,792 ] # P6/64
12
+
13
+ # yolov7 backbone
14
+ backbone:
15
+ # [from, number, module, args]
16
+ [[-1, 1, ReOrg, []], # 0
17
+ [-1, 1, Conv, [64, 3, 1]], # 1-P1/2
18
+
19
+ [-1, 1, Conv, [128, 3, 2]], # 2-P2/4
20
+ [-1, 1, Conv, [64, 1, 1]],
21
+ [-2, 1, Conv, [64, 1, 1]],
22
+ [-1, 1, Conv, [64, 3, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [[-1, -3, -5, -6], 1, Concat, [1]],
27
+ [-1, 1, Conv, [128, 1, 1]], # 10
28
+
29
+ [-1, 1, Conv, [256, 3, 2]], # 11-P3/8
30
+ [-1, 1, Conv, [128, 1, 1]],
31
+ [-2, 1, Conv, [128, 1, 1]],
32
+ [-1, 1, Conv, [128, 3, 1]],
33
+ [-1, 1, Conv, [128, 3, 1]],
34
+ [-1, 1, Conv, [128, 3, 1]],
35
+ [-1, 1, Conv, [128, 3, 1]],
36
+ [[-1, -3, -5, -6], 1, Concat, [1]],
37
+ [-1, 1, Conv, [256, 1, 1]], # 19
38
+
39
+ [-1, 1, Conv, [512, 3, 2]], # 20-P4/16
40
+ [-1, 1, Conv, [256, 1, 1]],
41
+ [-2, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [256, 3, 1]],
43
+ [-1, 1, Conv, [256, 3, 1]],
44
+ [-1, 1, Conv, [256, 3, 1]],
45
+ [-1, 1, Conv, [256, 3, 1]],
46
+ [[-1, -3, -5, -6], 1, Concat, [1]],
47
+ [-1, 1, Conv, [512, 1, 1]], # 28
48
+
49
+ [-1, 1, Conv, [768, 3, 2]], # 29-P5/32
50
+ [-1, 1, Conv, [384, 1, 1]],
51
+ [-2, 1, Conv, [384, 1, 1]],
52
+ [-1, 1, Conv, [384, 3, 1]],
53
+ [-1, 1, Conv, [384, 3, 1]],
54
+ [-1, 1, Conv, [384, 3, 1]],
55
+ [-1, 1, Conv, [384, 3, 1]],
56
+ [[-1, -3, -5, -6], 1, Concat, [1]],
57
+ [-1, 1, Conv, [768, 1, 1]], # 37
58
+
59
+ [-1, 1, Conv, [1024, 3, 2]], # 38-P6/64
60
+ [-1, 1, Conv, [512, 1, 1]],
61
+ [-2, 1, Conv, [512, 1, 1]],
62
+ [-1, 1, Conv, [512, 3, 1]],
63
+ [-1, 1, Conv, [512, 3, 1]],
64
+ [-1, 1, Conv, [512, 3, 1]],
65
+ [-1, 1, Conv, [512, 3, 1]],
66
+ [[-1, -3, -5, -6], 1, Concat, [1]],
67
+ [-1, 1, Conv, [1024, 1, 1]], # 46
68
+ ]
69
+
70
+ # yolov7 head
71
+ head:
72
+ [[-1, 1, SPPCSPC, [512]], # 47
73
+
74
+ [-1, 1, Conv, [384, 1, 1]],
75
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
76
+ [37, 1, Conv, [384, 1, 1]], # route backbone P5
77
+ [[-1, -2], 1, Concat, [1]],
78
+
79
+ [-1, 1, Conv, [384, 1, 1]],
80
+ [-2, 1, Conv, [384, 1, 1]],
81
+ [-1, 1, Conv, [192, 3, 1]],
82
+ [-1, 1, Conv, [192, 3, 1]],
83
+ [-1, 1, Conv, [192, 3, 1]],
84
+ [-1, 1, Conv, [192, 3, 1]],
85
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
86
+ [-1, 1, Conv, [384, 1, 1]], # 59
87
+
88
+ [-1, 1, Conv, [256, 1, 1]],
89
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
90
+ [28, 1, Conv, [256, 1, 1]], # route backbone P4
91
+ [[-1, -2], 1, Concat, [1]],
92
+
93
+ [-1, 1, Conv, [256, 1, 1]],
94
+ [-2, 1, Conv, [256, 1, 1]],
95
+ [-1, 1, Conv, [128, 3, 1]],
96
+ [-1, 1, Conv, [128, 3, 1]],
97
+ [-1, 1, Conv, [128, 3, 1]],
98
+ [-1, 1, Conv, [128, 3, 1]],
99
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
100
+ [-1, 1, Conv, [256, 1, 1]], # 71
101
+
102
+ [-1, 1, Conv, [128, 1, 1]],
103
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
104
+ [19, 1, Conv, [128, 1, 1]], # route backbone P3
105
+ [[-1, -2], 1, Concat, [1]],
106
+
107
+ [-1, 1, Conv, [128, 1, 1]],
108
+ [-2, 1, Conv, [128, 1, 1]],
109
+ [-1, 1, Conv, [64, 3, 1]],
110
+ [-1, 1, Conv, [64, 3, 1]],
111
+ [-1, 1, Conv, [64, 3, 1]],
112
+ [-1, 1, Conv, [64, 3, 1]],
113
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
114
+ [-1, 1, Conv, [128, 1, 1]], # 83
115
+
116
+ [-1, 1, Conv, [256, 3, 2]],
117
+ [[-1, 71], 1, Concat, [1]], # cat
118
+
119
+ [-1, 1, Conv, [256, 1, 1]],
120
+ [-2, 1, Conv, [256, 1, 1]],
121
+ [-1, 1, Conv, [128, 3, 1]],
122
+ [-1, 1, Conv, [128, 3, 1]],
123
+ [-1, 1, Conv, [128, 3, 1]],
124
+ [-1, 1, Conv, [128, 3, 1]],
125
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
126
+ [-1, 1, Conv, [256, 1, 1]], # 93
127
+
128
+ [-1, 1, Conv, [384, 3, 2]],
129
+ [[-1, 59], 1, Concat, [1]], # cat
130
+
131
+ [-1, 1, Conv, [384, 1, 1]],
132
+ [-2, 1, Conv, [384, 1, 1]],
133
+ [-1, 1, Conv, [192, 3, 1]],
134
+ [-1, 1, Conv, [192, 3, 1]],
135
+ [-1, 1, Conv, [192, 3, 1]],
136
+ [-1, 1, Conv, [192, 3, 1]],
137
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
138
+ [-1, 1, Conv, [384, 1, 1]], # 103
139
+
140
+ [-1, 1, Conv, [512, 3, 2]],
141
+ [[-1, 47], 1, Concat, [1]], # cat
142
+
143
+ [-1, 1, Conv, [512, 1, 1]],
144
+ [-2, 1, Conv, [512, 1, 1]],
145
+ [-1, 1, Conv, [256, 3, 1]],
146
+ [-1, 1, Conv, [256, 3, 1]],
147
+ [-1, 1, Conv, [256, 3, 1]],
148
+ [-1, 1, Conv, [256, 3, 1]],
149
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
150
+ [-1, 1, Conv, [512, 1, 1]], # 113
151
+
152
+ [83, 1, Conv, [256, 3, 1]],
153
+ [93, 1, Conv, [512, 3, 1]],
154
+ [103, 1, Conv, [768, 3, 1]],
155
+ [113, 1, Conv, [1024, 3, 1]],
156
+
157
+ [83, 1, Conv, [320, 3, 1]],
158
+ [71, 1, Conv, [640, 3, 1]],
159
+ [59, 1, Conv, [960, 3, 1]],
160
+ [47, 1, Conv, [1280, 3, 1]],
161
+
162
+ [[114,115,116,117,118,119,120,121], 1, IAuxDetect, [nc, anchors]], # Detect(P3, P4, P5, P6)
163
+ ]
detection/cfg/training/yolov7.yaml ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # yolov7 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+
17
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
18
+ [-1, 1, Conv, [64, 3, 1]],
19
+
20
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
21
+ [-1, 1, Conv, [64, 1, 1]],
22
+ [-2, 1, Conv, [64, 1, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [[-1, -3, -5, -6], 1, Concat, [1]],
28
+ [-1, 1, Conv, [256, 1, 1]], # 11
29
+
30
+ [-1, 1, MP, []],
31
+ [-1, 1, Conv, [128, 1, 1]],
32
+ [-3, 1, Conv, [128, 1, 1]],
33
+ [-1, 1, Conv, [128, 3, 2]],
34
+ [[-1, -3], 1, Concat, [1]], # 16-P3/8
35
+ [-1, 1, Conv, [128, 1, 1]],
36
+ [-2, 1, Conv, [128, 1, 1]],
37
+ [-1, 1, Conv, [128, 3, 1]],
38
+ [-1, 1, Conv, [128, 3, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [-1, 1, Conv, [128, 3, 1]],
41
+ [[-1, -3, -5, -6], 1, Concat, [1]],
42
+ [-1, 1, Conv, [512, 1, 1]], # 24
43
+
44
+ [-1, 1, MP, []],
45
+ [-1, 1, Conv, [256, 1, 1]],
46
+ [-3, 1, Conv, [256, 1, 1]],
47
+ [-1, 1, Conv, [256, 3, 2]],
48
+ [[-1, -3], 1, Concat, [1]], # 29-P4/16
49
+ [-1, 1, Conv, [256, 1, 1]],
50
+ [-2, 1, Conv, [256, 1, 1]],
51
+ [-1, 1, Conv, [256, 3, 1]],
52
+ [-1, 1, Conv, [256, 3, 1]],
53
+ [-1, 1, Conv, [256, 3, 1]],
54
+ [-1, 1, Conv, [256, 3, 1]],
55
+ [[-1, -3, -5, -6], 1, Concat, [1]],
56
+ [-1, 1, Conv, [1024, 1, 1]], # 37
57
+
58
+ [-1, 1, MP, []],
59
+ [-1, 1, Conv, [512, 1, 1]],
60
+ [-3, 1, Conv, [512, 1, 1]],
61
+ [-1, 1, Conv, [512, 3, 2]],
62
+ [[-1, -3], 1, Concat, [1]], # 42-P5/32
63
+ [-1, 1, Conv, [256, 1, 1]],
64
+ [-2, 1, Conv, [256, 1, 1]],
65
+ [-1, 1, Conv, [256, 3, 1]],
66
+ [-1, 1, Conv, [256, 3, 1]],
67
+ [-1, 1, Conv, [256, 3, 1]],
68
+ [-1, 1, Conv, [256, 3, 1]],
69
+ [[-1, -3, -5, -6], 1, Concat, [1]],
70
+ [-1, 1, Conv, [1024, 1, 1]], # 50
71
+ ]
72
+
73
+ # yolov7 head
74
+ head:
75
+ [[-1, 1, SPPCSPC, [512]], # 51
76
+
77
+ [-1, 1, Conv, [256, 1, 1]],
78
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
79
+ [37, 1, Conv, [256, 1, 1]], # route backbone P4
80
+ [[-1, -2], 1, Concat, [1]],
81
+
82
+ [-1, 1, Conv, [256, 1, 1]],
83
+ [-2, 1, Conv, [256, 1, 1]],
84
+ [-1, 1, Conv, [128, 3, 1]],
85
+ [-1, 1, Conv, [128, 3, 1]],
86
+ [-1, 1, Conv, [128, 3, 1]],
87
+ [-1, 1, Conv, [128, 3, 1]],
88
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
89
+ [-1, 1, Conv, [256, 1, 1]], # 63
90
+
91
+ [-1, 1, Conv, [128, 1, 1]],
92
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
93
+ [24, 1, Conv, [128, 1, 1]], # route backbone P3
94
+ [[-1, -2], 1, Concat, [1]],
95
+
96
+ [-1, 1, Conv, [128, 1, 1]],
97
+ [-2, 1, Conv, [128, 1, 1]],
98
+ [-1, 1, Conv, [64, 3, 1]],
99
+ [-1, 1, Conv, [64, 3, 1]],
100
+ [-1, 1, Conv, [64, 3, 1]],
101
+ [-1, 1, Conv, [64, 3, 1]],
102
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
103
+ [-1, 1, Conv, [128, 1, 1]], # 75
104
+
105
+ [-1, 1, MP, []],
106
+ [-1, 1, Conv, [128, 1, 1]],
107
+ [-3, 1, Conv, [128, 1, 1]],
108
+ [-1, 1, Conv, [128, 3, 2]],
109
+ [[-1, -3, 63], 1, Concat, [1]],
110
+
111
+ [-1, 1, Conv, [256, 1, 1]],
112
+ [-2, 1, Conv, [256, 1, 1]],
113
+ [-1, 1, Conv, [128, 3, 1]],
114
+ [-1, 1, Conv, [128, 3, 1]],
115
+ [-1, 1, Conv, [128, 3, 1]],
116
+ [-1, 1, Conv, [128, 3, 1]],
117
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
118
+ [-1, 1, Conv, [256, 1, 1]], # 88
119
+
120
+ [-1, 1, MP, []],
121
+ [-1, 1, Conv, [256, 1, 1]],
122
+ [-3, 1, Conv, [256, 1, 1]],
123
+ [-1, 1, Conv, [256, 3, 2]],
124
+ [[-1, -3, 51], 1, Concat, [1]],
125
+
126
+ [-1, 1, Conv, [512, 1, 1]],
127
+ [-2, 1, Conv, [512, 1, 1]],
128
+ [-1, 1, Conv, [256, 3, 1]],
129
+ [-1, 1, Conv, [256, 3, 1]],
130
+ [-1, 1, Conv, [256, 3, 1]],
131
+ [-1, 1, Conv, [256, 3, 1]],
132
+ [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
133
+ [-1, 1, Conv, [512, 1, 1]], # 101
134
+
135
+ [75, 1, RepConv, [256, 3, 1]],
136
+ [88, 1, RepConv, [512, 3, 1]],
137
+ [101, 1, RepConv, [1024, 3, 1]],
138
+
139
+ [[102,103,104], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
140
+ ]
detection/cfg/training/yolov7x.yaml ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [12,16, 19,36, 40,28] # P3/8
9
+ - [36,75, 76,55, 72,146] # P4/16
10
+ - [142,110, 192,243, 459,401] # P5/32
11
+
12
+ # yolov7 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [40, 3, 1]], # 0
16
+
17
+ [-1, 1, Conv, [80, 3, 2]], # 1-P1/2
18
+ [-1, 1, Conv, [80, 3, 1]],
19
+
20
+ [-1, 1, Conv, [160, 3, 2]], # 3-P2/4
21
+ [-1, 1, Conv, [64, 1, 1]],
22
+ [-2, 1, Conv, [64, 1, 1]],
23
+ [-1, 1, Conv, [64, 3, 1]],
24
+ [-1, 1, Conv, [64, 3, 1]],
25
+ [-1, 1, Conv, [64, 3, 1]],
26
+ [-1, 1, Conv, [64, 3, 1]],
27
+ [-1, 1, Conv, [64, 3, 1]],
28
+ [-1, 1, Conv, [64, 3, 1]],
29
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
30
+ [-1, 1, Conv, [320, 1, 1]], # 13
31
+
32
+ [-1, 1, MP, []],
33
+ [-1, 1, Conv, [160, 1, 1]],
34
+ [-3, 1, Conv, [160, 1, 1]],
35
+ [-1, 1, Conv, [160, 3, 2]],
36
+ [[-1, -3], 1, Concat, [1]], # 18-P3/8
37
+ [-1, 1, Conv, [128, 1, 1]],
38
+ [-2, 1, Conv, [128, 1, 1]],
39
+ [-1, 1, Conv, [128, 3, 1]],
40
+ [-1, 1, Conv, [128, 3, 1]],
41
+ [-1, 1, Conv, [128, 3, 1]],
42
+ [-1, 1, Conv, [128, 3, 1]],
43
+ [-1, 1, Conv, [128, 3, 1]],
44
+ [-1, 1, Conv, [128, 3, 1]],
45
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
46
+ [-1, 1, Conv, [640, 1, 1]], # 28
47
+
48
+ [-1, 1, MP, []],
49
+ [-1, 1, Conv, [320, 1, 1]],
50
+ [-3, 1, Conv, [320, 1, 1]],
51
+ [-1, 1, Conv, [320, 3, 2]],
52
+ [[-1, -3], 1, Concat, [1]], # 33-P4/16
53
+ [-1, 1, Conv, [256, 1, 1]],
54
+ [-2, 1, Conv, [256, 1, 1]],
55
+ [-1, 1, Conv, [256, 3, 1]],
56
+ [-1, 1, Conv, [256, 3, 1]],
57
+ [-1, 1, Conv, [256, 3, 1]],
58
+ [-1, 1, Conv, [256, 3, 1]],
59
+ [-1, 1, Conv, [256, 3, 1]],
60
+ [-1, 1, Conv, [256, 3, 1]],
61
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
62
+ [-1, 1, Conv, [1280, 1, 1]], # 43
63
+
64
+ [-1, 1, MP, []],
65
+ [-1, 1, Conv, [640, 1, 1]],
66
+ [-3, 1, Conv, [640, 1, 1]],
67
+ [-1, 1, Conv, [640, 3, 2]],
68
+ [[-1, -3], 1, Concat, [1]], # 48-P5/32
69
+ [-1, 1, Conv, [256, 1, 1]],
70
+ [-2, 1, Conv, [256, 1, 1]],
71
+ [-1, 1, Conv, [256, 3, 1]],
72
+ [-1, 1, Conv, [256, 3, 1]],
73
+ [-1, 1, Conv, [256, 3, 1]],
74
+ [-1, 1, Conv, [256, 3, 1]],
75
+ [-1, 1, Conv, [256, 3, 1]],
76
+ [-1, 1, Conv, [256, 3, 1]],
77
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
78
+ [-1, 1, Conv, [1280, 1, 1]], # 58
79
+ ]
80
+
81
+ # yolov7 head
82
+ head:
83
+ [[-1, 1, SPPCSPC, [640]], # 59
84
+
85
+ [-1, 1, Conv, [320, 1, 1]],
86
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
87
+ [43, 1, Conv, [320, 1, 1]], # route backbone P4
88
+ [[-1, -2], 1, Concat, [1]],
89
+
90
+ [-1, 1, Conv, [256, 1, 1]],
91
+ [-2, 1, Conv, [256, 1, 1]],
92
+ [-1, 1, Conv, [256, 3, 1]],
93
+ [-1, 1, Conv, [256, 3, 1]],
94
+ [-1, 1, Conv, [256, 3, 1]],
95
+ [-1, 1, Conv, [256, 3, 1]],
96
+ [-1, 1, Conv, [256, 3, 1]],
97
+ [-1, 1, Conv, [256, 3, 1]],
98
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
99
+ [-1, 1, Conv, [320, 1, 1]], # 73
100
+
101
+ [-1, 1, Conv, [160, 1, 1]],
102
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
103
+ [28, 1, Conv, [160, 1, 1]], # route backbone P3
104
+ [[-1, -2], 1, Concat, [1]],
105
+
106
+ [-1, 1, Conv, [128, 1, 1]],
107
+ [-2, 1, Conv, [128, 1, 1]],
108
+ [-1, 1, Conv, [128, 3, 1]],
109
+ [-1, 1, Conv, [128, 3, 1]],
110
+ [-1, 1, Conv, [128, 3, 1]],
111
+ [-1, 1, Conv, [128, 3, 1]],
112
+ [-1, 1, Conv, [128, 3, 1]],
113
+ [-1, 1, Conv, [128, 3, 1]],
114
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
115
+ [-1, 1, Conv, [160, 1, 1]], # 87
116
+
117
+ [-1, 1, MP, []],
118
+ [-1, 1, Conv, [160, 1, 1]],
119
+ [-3, 1, Conv, [160, 1, 1]],
120
+ [-1, 1, Conv, [160, 3, 2]],
121
+ [[-1, -3, 73], 1, Concat, [1]],
122
+
123
+ [-1, 1, Conv, [256, 1, 1]],
124
+ [-2, 1, Conv, [256, 1, 1]],
125
+ [-1, 1, Conv, [256, 3, 1]],
126
+ [-1, 1, Conv, [256, 3, 1]],
127
+ [-1, 1, Conv, [256, 3, 1]],
128
+ [-1, 1, Conv, [256, 3, 1]],
129
+ [-1, 1, Conv, [256, 3, 1]],
130
+ [-1, 1, Conv, [256, 3, 1]],
131
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
132
+ [-1, 1, Conv, [320, 1, 1]], # 102
133
+
134
+ [-1, 1, MP, []],
135
+ [-1, 1, Conv, [320, 1, 1]],
136
+ [-3, 1, Conv, [320, 1, 1]],
137
+ [-1, 1, Conv, [320, 3, 2]],
138
+ [[-1, -3, 59], 1, Concat, [1]],
139
+
140
+ [-1, 1, Conv, [512, 1, 1]],
141
+ [-2, 1, Conv, [512, 1, 1]],
142
+ [-1, 1, Conv, [512, 3, 1]],
143
+ [-1, 1, Conv, [512, 3, 1]],
144
+ [-1, 1, Conv, [512, 3, 1]],
145
+ [-1, 1, Conv, [512, 3, 1]],
146
+ [-1, 1, Conv, [512, 3, 1]],
147
+ [-1, 1, Conv, [512, 3, 1]],
148
+ [[-1, -3, -5, -7, -8], 1, Concat, [1]],
149
+ [-1, 1, Conv, [640, 1, 1]], # 117
150
+
151
+ [87, 1, Conv, [320, 3, 1]],
152
+ [102, 1, Conv, [640, 3, 1]],
153
+ [117, 1, Conv, [1280, 3, 1]],
154
+
155
+ [[118,119,120], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
156
+ ]
detection/data/coco.yaml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # COCO 2017 dataset http://cocodataset.org
2
+
3
+ # download command/URL (optional)
4
+ download: bash ./scripts/get_coco.sh
5
+
6
+ # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
7
+ train: ./coco/train2017.txt # 118287 images
8
+ val: ./coco/val2017.txt # 5000 images
9
+ test: ./coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
10
+
11
+ # number of classes
12
+ nc: 80
13
+
14
+ # class names
15
+ names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
16
+ 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
17
+ 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
18
+ 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
19
+ 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
20
+ 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
21
+ 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
22
+ 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
23
+ 'hair drier', 'toothbrush' ]
detection/data/hyp.scratch.custom.yaml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2
+ lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
3
+ momentum: 0.937 # SGD momentum/Adam beta1
4
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
5
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
6
+ warmup_momentum: 0.8 # warmup initial momentum
7
+ warmup_bias_lr: 0.1 # warmup initial bias lr
8
+ box: 0.05 # box loss gain
9
+ cls: 0.3 # cls loss gain
10
+ cls_pw: 1.0 # cls BCELoss positive_weight
11
+ obj: 0.7 # obj loss gain (scale with pixels)
12
+ obj_pw: 1.0 # obj BCELoss positive_weight
13
+ iou_t: 0.20 # IoU training threshold
14
+ anchor_t: 4.0 # anchor-multiple threshold
15
+ # anchors: 3 # anchors per output layer (0 to ignore)
16
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20
+ degrees: 0.0 # image rotation (+/- deg)
21
+ translate: 0.2 # image translation (+/- fraction)
22
+ scale: 0.5 # image scale (+/- gain)
23
+ shear: 0.0 # image shear (+/- deg)
24
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25
+ flipud: 0.0 # image flip up-down (probability)
26
+ fliplr: 0.5 # image flip left-right (probability)
27
+ mosaic: 1.0 # image mosaic (probability)
28
+ mixup: 0.0 # image mixup (probability)
29
+ copy_paste: 0.0 # image copy paste (probability)
30
+ paste_in: 0.0 # image copy paste (probability), use 0 for faster training
31
+ loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
detection/data/hyp.scratch.p5.yaml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2
+ lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
3
+ momentum: 0.937 # SGD momentum/Adam beta1
4
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
5
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
6
+ warmup_momentum: 0.8 # warmup initial momentum
7
+ warmup_bias_lr: 0.1 # warmup initial bias lr
8
+ box: 0.05 # box loss gain
9
+ cls: 0.3 # cls loss gain
10
+ cls_pw: 1.0 # cls BCELoss positive_weight
11
+ obj: 0.7 # obj loss gain (scale with pixels)
12
+ obj_pw: 1.0 # obj BCELoss positive_weight
13
+ iou_t: 0.20 # IoU training threshold
14
+ anchor_t: 4.0 # anchor-multiple threshold
15
+ # anchors: 3 # anchors per output layer (0 to ignore)
16
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20
+ degrees: 0.0 # image rotation (+/- deg)
21
+ translate: 0.2 # image translation (+/- fraction)
22
+ scale: 0.9 # image scale (+/- gain)
23
+ shear: 0.0 # image shear (+/- deg)
24
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25
+ flipud: 0.0 # image flip up-down (probability)
26
+ fliplr: 0.5 # image flip left-right (probability)
27
+ mosaic: 1.0 # image mosaic (probability)
28
+ mixup: 0.15 # image mixup (probability)
29
+ copy_paste: 0.0 # image copy paste (probability)
30
+ paste_in: 0.15 # image copy paste (probability), use 0 for faster training
31
+ loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
detection/data/hyp.scratch.p6.yaml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2
+ lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
3
+ momentum: 0.937 # SGD momentum/Adam beta1
4
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
5
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
6
+ warmup_momentum: 0.8 # warmup initial momentum
7
+ warmup_bias_lr: 0.1 # warmup initial bias lr
8
+ box: 0.05 # box loss gain
9
+ cls: 0.3 # cls loss gain
10
+ cls_pw: 1.0 # cls BCELoss positive_weight
11
+ obj: 0.7 # obj loss gain (scale with pixels)
12
+ obj_pw: 1.0 # obj BCELoss positive_weight
13
+ iou_t: 0.20 # IoU training threshold
14
+ anchor_t: 4.0 # anchor-multiple threshold
15
+ # anchors: 3 # anchors per output layer (0 to ignore)
16
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20
+ degrees: 0.0 # image rotation (+/- deg)
21
+ translate: 0.2 # image translation (+/- fraction)
22
+ scale: 0.9 # image scale (+/- gain)
23
+ shear: 0.0 # image shear (+/- deg)
24
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25
+ flipud: 0.0 # image flip up-down (probability)
26
+ fliplr: 0.5 # image flip left-right (probability)
27
+ mosaic: 1.0 # image mosaic (probability)
28
+ mixup: 0.15 # image mixup (probability)
29
+ copy_paste: 0.0 # image copy paste (probability)
30
+ paste_in: 0.15 # image copy paste (probability), use 0 for faster training
31
+ loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
detection/data/hyp.scratch.tiny.yaml ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2
+ lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
3
+ momentum: 0.937 # SGD momentum/Adam beta1
4
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
5
+ warmup_epochs: 3.0 # warmup epochs (fractions ok)
6
+ warmup_momentum: 0.8 # warmup initial momentum
7
+ warmup_bias_lr: 0.1 # warmup initial bias lr
8
+ box: 0.05 # box loss gain
9
+ cls: 0.5 # cls loss gain
10
+ cls_pw: 1.0 # cls BCELoss positive_weight
11
+ obj: 1.0 # obj loss gain (scale with pixels)
12
+ obj_pw: 1.0 # obj BCELoss positive_weight
13
+ iou_t: 0.20 # IoU training threshold
14
+ anchor_t: 4.0 # anchor-multiple threshold
15
+ # anchors: 3 # anchors per output layer (0 to ignore)
16
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20
+ degrees: 0.0 # image rotation (+/- deg)
21
+ translate: 0.1 # image translation (+/- fraction)
22
+ scale: 0.5 # image scale (+/- gain)
23
+ shear: 0.0 # image shear (+/- deg)
24
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25
+ flipud: 0.0 # image flip up-down (probability)
26
+ fliplr: 0.5 # image flip left-right (probability)
27
+ mosaic: 1.0 # image mosaic (probability)
28
+ mixup: 0.05 # image mixup (probability)
29
+ copy_paste: 0.0 # image copy paste (probability)
30
+ paste_in: 0.05 # image copy paste (probability), use 0 for faster training
31
+ loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
detection/detect.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import time
3
+ from pathlib import Path
4
+
5
+ import cv2
6
+ import torch
7
+ import torch.backends.cudnn as cudnn
8
+ from numpy import random
9
+
10
+ from models.experimental import attempt_load
11
+ from utils.datasets import LoadStreams, LoadImages
12
+ from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
13
+ scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
14
+ from utils.plots import plot_one_box
15
+ from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
16
+
17
+
18
+ def detect(save_img=False):
19
+ source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
20
+ save_img = not opt.nosave and not source.endswith('.txt') # save inference images
21
+ webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
22
+ ('rtsp://', 'rtmp://', 'http://', 'https://'))
23
+
24
+ # Directories
25
+ save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
26
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
27
+
28
+ # Initialize
29
+ set_logging()
30
+ device = select_device(opt.device)
31
+ half = device.type != 'cpu' # half precision only supported on CUDA
32
+
33
+ # Load model
34
+ model = attempt_load(weights, map_location=device) # load FP32 model
35
+ stride = int(model.stride.max()) # model stride
36
+ imgsz = check_img_size(imgsz, s=stride) # check img_size
37
+
38
+ if trace:
39
+ model = TracedModel(model, device, opt.img_size)
40
+
41
+ if half:
42
+ model.half() # to FP16
43
+
44
+ # Second-stage classifier
45
+ classify = False
46
+ if classify:
47
+ modelc = load_classifier(name='resnet101', n=2) # initialize
48
+ modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
49
+
50
+ # Set Dataloader
51
+ vid_path, vid_writer = None, None
52
+ if webcam:
53
+ view_img = check_imshow()
54
+ cudnn.benchmark = True # set True to speed up constant image size inference
55
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride)
56
+ else:
57
+ dataset = LoadImages(source, img_size=imgsz, stride=stride)
58
+
59
+ # Get names and colors
60
+ names = model.module.names if hasattr(model, 'module') else model.names
61
+ colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
62
+
63
+ # Run inference
64
+ if device.type != 'cpu':
65
+ model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
66
+ old_img_w = old_img_h = imgsz
67
+ old_img_b = 1
68
+
69
+ t0 = time.time()
70
+ for path, img, im0s, vid_cap in dataset:
71
+ img = torch.from_numpy(img).to(device)
72
+ img = img.half() if half else img.float() # uint8 to fp16/32
73
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
74
+ if img.ndimension() == 3:
75
+ img = img.unsqueeze(0)
76
+
77
+ # Warmup
78
+ if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
79
+ old_img_b = img.shape[0]
80
+ old_img_h = img.shape[2]
81
+ old_img_w = img.shape[3]
82
+ for i in range(3):
83
+ model(img, augment=opt.augment)[0]
84
+
85
+ # Inference
86
+ t1 = time_synchronized()
87
+ pred = model(img, augment=opt.augment)[0]
88
+ t2 = time_synchronized()
89
+
90
+ # Apply NMS
91
+ pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
92
+ t3 = time_synchronized()
93
+
94
+ # Apply Classifier
95
+ if classify:
96
+ pred = apply_classifier(pred, modelc, img, im0s)
97
+
98
+ # Process detections
99
+ for i, det in enumerate(pred): # detections per image
100
+ if webcam: # batch_size >= 1
101
+ p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
102
+ else:
103
+ p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
104
+
105
+ p = Path(p) # to Path
106
+ save_path = str(save_dir / p.name) # img.jpg
107
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
108
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
109
+ if len(det):
110
+ # Rescale boxes from img_size to im0 size
111
+ det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
112
+
113
+ # Print results
114
+ for c in det[:, -1].unique():
115
+ n = (det[:, -1] == c).sum() # detections per class
116
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
117
+
118
+ # Write results
119
+ for *xyxy, conf, cls in reversed(det):
120
+ if save_txt: # Write to file
121
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
122
+ line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
123
+ with open(txt_path + '.txt', 'a') as f:
124
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
125
+
126
+ if save_img or view_img: # Add bbox to image
127
+ label = f'{names[int(cls)]} {conf:.2f}'
128
+ plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
129
+
130
+ # Print time (inference + NMS)
131
+ print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
132
+
133
+ # Stream results
134
+ if view_img:
135
+ cv2.imshow(str(p), im0)
136
+ cv2.waitKey(1) # 1 millisecond
137
+
138
+ # Save results (image with detections)
139
+ if save_img:
140
+ if dataset.mode == 'image':
141
+ cv2.imwrite(save_path, im0)
142
+ print(f" The image with the result is saved in: {save_path}")
143
+ else: # 'video' or 'stream'
144
+ if vid_path != save_path: # new video
145
+ vid_path = save_path
146
+ if isinstance(vid_writer, cv2.VideoWriter):
147
+ vid_writer.release() # release previous video writer
148
+ if vid_cap: # video
149
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
150
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
151
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
152
+ else: # stream
153
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
154
+ save_path += '.mp4'
155
+ vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
156
+ vid_writer.write(im0)
157
+
158
+ if save_txt or save_img:
159
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
160
+ #print(f"Results saved to {save_dir}{s}")
161
+
162
+ print(f'Done. ({time.time() - t0:.3f}s)')
163
+
164
+
165
+ if __name__ == '__main__':
166
+ parser = argparse.ArgumentParser()
167
+ parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
168
+ parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
169
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
170
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
171
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
172
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
173
+ parser.add_argument('--view-img', action='store_true', help='display results')
174
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
175
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
176
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
177
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
178
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
179
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
180
+ parser.add_argument('--update', action='store_true', help='update all models')
181
+ parser.add_argument('--project', default='runs/detect', help='save results to project/name')
182
+ parser.add_argument('--name', default='exp', help='save results to project/name')
183
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
184
+ parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
185
+ opt = parser.parse_args()
186
+ print(opt)
187
+ #check_requirements(exclude=('pycocotools', 'thop'))
188
+
189
+ with torch.no_grad():
190
+ if opt.update: # update all models (to fix SourceChangeWarning)
191
+ for opt.weights in ['yolov7.pt']:
192
+ detect()
193
+ strip_optimizer(opt.weights)
194
+ else:
195
+ detect()
detection/export.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import sys
3
+ import time
4
+ import warnings
5
+
6
+ sys.path.append('./') # to run '$ python *.py' files in subdirectories
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ from torch.utils.mobile_optimizer import optimize_for_mobile
11
+
12
+ import models
13
+ from models.experimental import attempt_load, End2End
14
+ from utils.activations import Hardswish, SiLU
15
+ from utils.general import set_logging, check_img_size
16
+ from utils.torch_utils import select_device
17
+ from utils.add_nms import RegisterNMS
18
+
19
+ if __name__ == '__main__':
20
+ parser = argparse.ArgumentParser()
21
+ parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
22
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
23
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
24
+ parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
25
+ parser.add_argument('--dynamic-batch', action='store_true', help='dynamic batch onnx for tensorrt and onnx-runtime')
26
+ parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
27
+ parser.add_argument('--end2end', action='store_true', help='export end2end onnx')
28
+ parser.add_argument('--max-wh', type=int, default=None, help='None for tensorrt nms, int value for onnx-runtime nms')
29
+ parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
30
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS')
31
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='conf threshold for NMS')
32
+ parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
33
+ parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
34
+ parser.add_argument('--include-nms', action='store_true', help='export end2end onnx')
35
+ parser.add_argument('--fp16', action='store_true', help='CoreML FP16 half-precision export')
36
+ parser.add_argument('--int8', action='store_true', help='CoreML INT8 quantization')
37
+ opt = parser.parse_args()
38
+ opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
39
+ opt.dynamic = opt.dynamic and not opt.end2end
40
+ opt.dynamic = False if opt.dynamic_batch else opt.dynamic
41
+ print(opt)
42
+ set_logging()
43
+ t = time.time()
44
+
45
+ # Load PyTorch model
46
+ device = select_device(opt.device)
47
+ model = attempt_load(opt.weights, map_location=device) # load FP32 model
48
+ labels = model.names
49
+
50
+ # Checks
51
+ gs = int(max(model.stride)) # grid size (max stride)
52
+ opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
53
+
54
+ # Input
55
+ img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
56
+
57
+ # Update model
58
+ for k, m in model.named_modules():
59
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
60
+ if isinstance(m, models.common.Conv): # assign export-friendly activations
61
+ if isinstance(m.act, nn.Hardswish):
62
+ m.act = Hardswish()
63
+ elif isinstance(m.act, nn.SiLU):
64
+ m.act = SiLU()
65
+ # elif isinstance(m, models.yolo.Detect):
66
+ # m.forward = m.forward_export # assign forward (optional)
67
+ model.model[-1].export = not opt.grid # set Detect() layer grid export
68
+ y = model(img) # dry run
69
+ if opt.include_nms:
70
+ model.model[-1].include_nms = True
71
+ y = None
72
+
73
+ # TorchScript export
74
+ try:
75
+ print('\nStarting TorchScript export with torch %s...' % torch.__version__)
76
+ f = opt.weights.replace('.pt', '.torchscript.pt') # filename
77
+ ts = torch.jit.trace(model, img, strict=False)
78
+ ts.save(f)
79
+ print('TorchScript export success, saved as %s' % f)
80
+ except Exception as e:
81
+ print('TorchScript export failure: %s' % e)
82
+
83
+ # CoreML export
84
+ try:
85
+ import coremltools as ct
86
+
87
+ print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
88
+ # convert model from torchscript and apply pixel scaling as per detect.py
89
+ ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
90
+ bits, mode = (8, 'kmeans_lut') if opt.int8 else (16, 'linear') if opt.fp16 else (32, None)
91
+ if bits < 32:
92
+ if sys.platform.lower() == 'darwin': # quantization only supported on macOS
93
+ with warnings.catch_warnings():
94
+ warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
95
+ ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
96
+ else:
97
+ print('quantization only supported on macOS, skipping...')
98
+
99
+ f = opt.weights.replace('.pt', '.mlmodel') # filename
100
+ ct_model.save(f)
101
+ print('CoreML export success, saved as %s' % f)
102
+ except Exception as e:
103
+ print('CoreML export failure: %s' % e)
104
+
105
+ # TorchScript-Lite export
106
+ try:
107
+ print('\nStarting TorchScript-Lite export with torch %s...' % torch.__version__)
108
+ f = opt.weights.replace('.pt', '.torchscript.ptl') # filename
109
+ tsl = torch.jit.trace(model, img, strict=False)
110
+ tsl = optimize_for_mobile(tsl)
111
+ tsl._save_for_lite_interpreter(f)
112
+ print('TorchScript-Lite export success, saved as %s' % f)
113
+ except Exception as e:
114
+ print('TorchScript-Lite export failure: %s' % e)
115
+
116
+ # ONNX export
117
+ try:
118
+ import onnx
119
+
120
+ print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
121
+ f = opt.weights.replace('.pt', '.onnx') # filename
122
+ model.eval()
123
+ output_names = ['classes', 'boxes'] if y is None else ['output']
124
+ dynamic_axes = None
125
+ if opt.dynamic:
126
+ dynamic_axes = {'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
127
+ 'output': {0: 'batch', 2: 'y', 3: 'x'}}
128
+ if opt.dynamic_batch:
129
+ opt.batch_size = 'batch'
130
+ dynamic_axes = {
131
+ 'images': {
132
+ 0: 'batch',
133
+ }, }
134
+ if opt.end2end and opt.max_wh is None:
135
+ output_axes = {
136
+ 'num_dets': {0: 'batch'},
137
+ 'det_boxes': {0: 'batch'},
138
+ 'det_scores': {0: 'batch'},
139
+ 'det_classes': {0: 'batch'},
140
+ }
141
+ else:
142
+ output_axes = {
143
+ 'output': {0: 'batch'},
144
+ }
145
+ dynamic_axes.update(output_axes)
146
+ if opt.grid:
147
+ if opt.end2end:
148
+ print('\nStarting export end2end onnx model for %s...' % 'TensorRT' if opt.max_wh is None else 'onnxruntime')
149
+ model = End2End(model,opt.topk_all,opt.iou_thres,opt.conf_thres,opt.max_wh,device)
150
+ if opt.end2end and opt.max_wh is None:
151
+ output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes']
152
+ shapes = [opt.batch_size, 1, opt.batch_size, opt.topk_all, 4,
153
+ opt.batch_size, opt.topk_all, opt.batch_size, opt.topk_all]
154
+ else:
155
+ output_names = ['output']
156
+ else:
157
+ model.model[-1].concat = True
158
+
159
+ torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
160
+ output_names=output_names,
161
+ dynamic_axes=dynamic_axes)
162
+
163
+ # Checks
164
+ onnx_model = onnx.load(f) # load onnx model
165
+ onnx.checker.check_model(onnx_model) # check onnx model
166
+
167
+ if opt.end2end and opt.max_wh is None:
168
+ for i in onnx_model.graph.output:
169
+ for j in i.type.tensor_type.shape.dim:
170
+ j.dim_param = str(shapes.pop(0))
171
+
172
+ # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
173
+
174
+ # # Metadata
175
+ # d = {'stride': int(max(model.stride))}
176
+ # for k, v in d.items():
177
+ # meta = onnx_model.metadata_props.add()
178
+ # meta.key, meta.value = k, str(v)
179
+ # onnx.save(onnx_model, f)
180
+
181
+ if opt.simplify:
182
+ try:
183
+ import onnxsim
184
+
185
+ print('\nStarting to simplify ONNX...')
186
+ onnx_model, check = onnxsim.simplify(onnx_model)
187
+ assert check, 'assert check failed'
188
+ except Exception as e:
189
+ print(f'Simplifier failure: {e}')
190
+
191
+ # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
192
+ onnx.save(onnx_model,f)
193
+ print('ONNX export success, saved as %s' % f)
194
+
195
+ if opt.include_nms:
196
+ print('Registering NMS plugin for ONNX...')
197
+ mo = RegisterNMS(f)
198
+ mo.register_nms()
199
+ mo.save(f)
200
+
201
+ except Exception as e:
202
+ print('ONNX export failure: %s' % e)
203
+
204
+ # Finish
205
+ print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
detection/hubconf.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """PyTorch Hub models
2
+
3
+ Usage:
4
+ import torch
5
+ model = torch.hub.load('repo', 'model')
6
+ """
7
+
8
+ from pathlib import Path
9
+
10
+ import torch
11
+
12
+ from models.yolo import Model
13
+ from utils.general import check_requirements, set_logging
14
+ from utils.google_utils import attempt_download
15
+ from utils.torch_utils import select_device
16
+
17
+ dependencies = ['torch', 'yaml']
18
+ check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop'))
19
+ set_logging()
20
+
21
+
22
+ def create(name, pretrained, channels, classes, autoshape):
23
+ """Creates a specified model
24
+
25
+ Arguments:
26
+ name (str): name of model, i.e. 'yolov7'
27
+ pretrained (bool): load pretrained weights into the model
28
+ channels (int): number of input channels
29
+ classes (int): number of model classes
30
+
31
+ Returns:
32
+ pytorch model
33
+ """
34
+ try:
35
+ cfg = list((Path(__file__).parent / 'cfg').rglob(f'{name}.yaml'))[0] # model.yaml path
36
+ model = Model(cfg, channels, classes)
37
+ if pretrained:
38
+ fname = f'{name}.pt' # checkpoint filename
39
+ attempt_download(fname) # download if not found locally
40
+ ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
41
+ msd = model.state_dict() # model state_dict
42
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
43
+ csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
44
+ model.load_state_dict(csd, strict=False) # load
45
+ if len(ckpt['model'].names) == classes:
46
+ model.names = ckpt['model'].names # set class names attribute
47
+ if autoshape:
48
+ model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
49
+ device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
50
+ return model.to(device)
51
+
52
+ except Exception as e:
53
+ s = 'Cache maybe be out of date, try force_reload=True.'
54
+ raise Exception(s) from e
55
+
56
+
57
+ def custom(path_or_model='path/to/model.pt', autoshape=True):
58
+ """custom mode
59
+
60
+ Arguments (3 options):
61
+ path_or_model (str): 'path/to/model.pt'
62
+ path_or_model (dict): torch.load('path/to/model.pt')
63
+ path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
64
+
65
+ Returns:
66
+ pytorch model
67
+ """
68
+ model = torch.load(path_or_model, map_location=torch.device('cpu')) if isinstance(path_or_model, str) else path_or_model # load checkpoint
69
+ if isinstance(model, dict):
70
+ model = model['ema' if model.get('ema') else 'model'] # load model
71
+
72
+ hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
73
+ hub_model.load_state_dict(model.float().state_dict()) # load state_dict
74
+ hub_model.names = model.names # class names
75
+ if autoshape:
76
+ hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
77
+ device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
78
+ return hub_model.to(device)
79
+
80
+
81
+ def yolov7(pretrained=True, channels=3, classes=80, autoshape=True):
82
+ return create('yolov7', pretrained, channels, classes, autoshape)
83
+
84
+
85
+ if __name__ == '__main__':
86
+ model = custom(path_or_model='yolov7.pt') # custom example
87
+ # model = create(name='yolov7', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
88
+
89
+ # Verify inference
90
+ import numpy as np
91
+ from PIL import Image
92
+
93
+ imgs = [np.zeros((640, 480, 3))]
94
+
95
+ results = model(imgs) # batched inference
96
+ results.print()
97
+ results.save()
detection/models/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # init
detection/models/common.py ADDED
@@ -0,0 +1,2019 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from copy import copy
3
+ from pathlib import Path
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+ import requests
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ from torchvision.ops import DeformConv2d
12
+ from PIL import Image
13
+ from torch.cuda import amp
14
+
15
+ from utils.datasets import letterbox
16
+ from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh
17
+ from utils.plots import color_list, plot_one_box
18
+ from utils.torch_utils import time_synchronized
19
+
20
+
21
+ ##### basic ####
22
+
23
+ def autopad(k, p=None): # kernel, padding
24
+ # Pad to 'same'
25
+ if p is None:
26
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
27
+ return p
28
+
29
+
30
+ class MP(nn.Module):
31
+ def __init__(self, k=2):
32
+ super(MP, self).__init__()
33
+ self.m = nn.MaxPool2d(kernel_size=k, stride=k)
34
+
35
+ def forward(self, x):
36
+ return self.m(x)
37
+
38
+
39
+ class SP(nn.Module):
40
+ def __init__(self, k=3, s=1):
41
+ super(SP, self).__init__()
42
+ self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2)
43
+
44
+ def forward(self, x):
45
+ return self.m(x)
46
+
47
+
48
+ class ReOrg(nn.Module):
49
+ def __init__(self):
50
+ super(ReOrg, self).__init__()
51
+
52
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
53
+ return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
54
+
55
+
56
+ class Concat(nn.Module):
57
+ def __init__(self, dimension=1):
58
+ super(Concat, self).__init__()
59
+ self.d = dimension
60
+
61
+ def forward(self, x):
62
+ return torch.cat(x, self.d)
63
+
64
+
65
+ class Chuncat(nn.Module):
66
+ def __init__(self, dimension=1):
67
+ super(Chuncat, self).__init__()
68
+ self.d = dimension
69
+
70
+ def forward(self, x):
71
+ x1 = []
72
+ x2 = []
73
+ for xi in x:
74
+ xi1, xi2 = xi.chunk(2, self.d)
75
+ x1.append(xi1)
76
+ x2.append(xi2)
77
+ return torch.cat(x1+x2, self.d)
78
+
79
+
80
+ class Shortcut(nn.Module):
81
+ def __init__(self, dimension=0):
82
+ super(Shortcut, self).__init__()
83
+ self.d = dimension
84
+
85
+ def forward(self, x):
86
+ return x[0]+x[1]
87
+
88
+
89
+ class Foldcut(nn.Module):
90
+ def __init__(self, dimension=0):
91
+ super(Foldcut, self).__init__()
92
+ self.d = dimension
93
+
94
+ def forward(self, x):
95
+ x1, x2 = x.chunk(2, self.d)
96
+ return x1+x2
97
+
98
+
99
+ class Conv(nn.Module):
100
+ # Standard convolution
101
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
102
+ super(Conv, self).__init__()
103
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
104
+ self.bn = nn.BatchNorm2d(c2)
105
+ self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
106
+
107
+ def forward(self, x):
108
+ return self.act(self.bn(self.conv(x)))
109
+
110
+ def fuseforward(self, x):
111
+ return self.act(self.conv(x))
112
+
113
+
114
+ class RobustConv(nn.Module):
115
+ # Robust convolution (use high kernel size 7-11 for: downsampling and other layers). Train for 300 - 450 epochs.
116
+ def __init__(self, c1, c2, k=7, s=1, p=None, g=1, act=True, layer_scale_init_value=1e-6): # ch_in, ch_out, kernel, stride, padding, groups
117
+ super(RobustConv, self).__init__()
118
+ self.conv_dw = Conv(c1, c1, k=k, s=s, p=p, g=c1, act=act)
119
+ self.conv1x1 = nn.Conv2d(c1, c2, 1, 1, 0, groups=1, bias=True)
120
+ self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c2)) if layer_scale_init_value > 0 else None
121
+
122
+ def forward(self, x):
123
+ x = x.to(memory_format=torch.channels_last)
124
+ x = self.conv1x1(self.conv_dw(x))
125
+ if self.gamma is not None:
126
+ x = x.mul(self.gamma.reshape(1, -1, 1, 1))
127
+ return x
128
+
129
+
130
+ class RobustConv2(nn.Module):
131
+ # Robust convolution 2 (use [32, 5, 2] or [32, 7, 4] or [32, 11, 8] for one of the paths in CSP).
132
+ def __init__(self, c1, c2, k=7, s=4, p=None, g=1, act=True, layer_scale_init_value=1e-6): # ch_in, ch_out, kernel, stride, padding, groups
133
+ super(RobustConv2, self).__init__()
134
+ self.conv_strided = Conv(c1, c1, k=k, s=s, p=p, g=c1, act=act)
135
+ self.conv_deconv = nn.ConvTranspose2d(in_channels=c1, out_channels=c2, kernel_size=s, stride=s,
136
+ padding=0, bias=True, dilation=1, groups=1
137
+ )
138
+ self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c2)) if layer_scale_init_value > 0 else None
139
+
140
+ def forward(self, x):
141
+ x = self.conv_deconv(self.conv_strided(x))
142
+ if self.gamma is not None:
143
+ x = x.mul(self.gamma.reshape(1, -1, 1, 1))
144
+ return x
145
+
146
+
147
+ def DWConv(c1, c2, k=1, s=1, act=True):
148
+ # Depthwise convolution
149
+ return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
150
+
151
+
152
+ class GhostConv(nn.Module):
153
+ # Ghost Convolution https://github.com/huawei-noah/ghostnet
154
+ def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
155
+ super(GhostConv, self).__init__()
156
+ c_ = c2 // 2 # hidden channels
157
+ self.cv1 = Conv(c1, c_, k, s, None, g, act)
158
+ self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
159
+
160
+ def forward(self, x):
161
+ y = self.cv1(x)
162
+ return torch.cat([y, self.cv2(y)], 1)
163
+
164
+
165
+ class Stem(nn.Module):
166
+ # Stem
167
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
168
+ super(Stem, self).__init__()
169
+ c_ = int(c2/2) # hidden channels
170
+ self.cv1 = Conv(c1, c_, 3, 2)
171
+ self.cv2 = Conv(c_, c_, 1, 1)
172
+ self.cv3 = Conv(c_, c_, 3, 2)
173
+ self.pool = torch.nn.MaxPool2d(2, stride=2)
174
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
175
+
176
+ def forward(self, x):
177
+ x = self.cv1(x)
178
+ return self.cv4(torch.cat((self.cv3(self.cv2(x)), self.pool(x)), dim=1))
179
+
180
+
181
+ class DownC(nn.Module):
182
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
183
+ def __init__(self, c1, c2, n=1, k=2):
184
+ super(DownC, self).__init__()
185
+ c_ = int(c1) # hidden channels
186
+ self.cv1 = Conv(c1, c_, 1, 1)
187
+ self.cv2 = Conv(c_, c2//2, 3, k)
188
+ self.cv3 = Conv(c1, c2//2, 1, 1)
189
+ self.mp = nn.MaxPool2d(kernel_size=k, stride=k)
190
+
191
+ def forward(self, x):
192
+ return torch.cat((self.cv2(self.cv1(x)), self.cv3(self.mp(x))), dim=1)
193
+
194
+
195
+ class SPP(nn.Module):
196
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
197
+ def __init__(self, c1, c2, k=(5, 9, 13)):
198
+ super(SPP, self).__init__()
199
+ c_ = c1 // 2 # hidden channels
200
+ self.cv1 = Conv(c1, c_, 1, 1)
201
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
202
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
203
+
204
+ def forward(self, x):
205
+ x = self.cv1(x)
206
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
207
+
208
+
209
+ class Bottleneck(nn.Module):
210
+ # Darknet bottleneck
211
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
212
+ super(Bottleneck, self).__init__()
213
+ c_ = int(c2 * e) # hidden channels
214
+ self.cv1 = Conv(c1, c_, 1, 1)
215
+ self.cv2 = Conv(c_, c2, 3, 1, g=g)
216
+ self.add = shortcut and c1 == c2
217
+
218
+ def forward(self, x):
219
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
220
+
221
+
222
+ class Res(nn.Module):
223
+ # ResNet bottleneck
224
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
225
+ super(Res, self).__init__()
226
+ c_ = int(c2 * e) # hidden channels
227
+ self.cv1 = Conv(c1, c_, 1, 1)
228
+ self.cv2 = Conv(c_, c_, 3, 1, g=g)
229
+ self.cv3 = Conv(c_, c2, 1, 1)
230
+ self.add = shortcut and c1 == c2
231
+
232
+ def forward(self, x):
233
+ return x + self.cv3(self.cv2(self.cv1(x))) if self.add else self.cv3(self.cv2(self.cv1(x)))
234
+
235
+
236
+ class ResX(Res):
237
+ # ResNet bottleneck
238
+ def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
239
+ super().__init__(c1, c2, shortcut, g, e)
240
+ c_ = int(c2 * e) # hidden channels
241
+
242
+
243
+ class Ghost(nn.Module):
244
+ # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
245
+ def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
246
+ super(Ghost, self).__init__()
247
+ c_ = c2 // 2
248
+ self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
249
+ DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
250
+ GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
251
+ self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
252
+ Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
253
+
254
+ def forward(self, x):
255
+ return self.conv(x) + self.shortcut(x)
256
+
257
+ ##### end of basic #####
258
+
259
+
260
+ ##### cspnet #####
261
+
262
+ class SPPCSPC(nn.Module):
263
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
264
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
265
+ super(SPPCSPC, self).__init__()
266
+ c_ = int(2 * c2 * e) # hidden channels
267
+ self.cv1 = Conv(c1, c_, 1, 1)
268
+ self.cv2 = Conv(c1, c_, 1, 1)
269
+ self.cv3 = Conv(c_, c_, 3, 1)
270
+ self.cv4 = Conv(c_, c_, 1, 1)
271
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
272
+ self.cv5 = Conv(4 * c_, c_, 1, 1)
273
+ self.cv6 = Conv(c_, c_, 3, 1)
274
+ self.cv7 = Conv(2 * c_, c2, 1, 1)
275
+
276
+ def forward(self, x):
277
+ x1 = self.cv4(self.cv3(self.cv1(x)))
278
+ y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
279
+ y2 = self.cv2(x)
280
+ return self.cv7(torch.cat((y1, y2), dim=1))
281
+
282
+ class GhostSPPCSPC(SPPCSPC):
283
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
284
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
285
+ super().__init__(c1, c2, n, shortcut, g, e, k)
286
+ c_ = int(2 * c2 * e) # hidden channels
287
+ self.cv1 = GhostConv(c1, c_, 1, 1)
288
+ self.cv2 = GhostConv(c1, c_, 1, 1)
289
+ self.cv3 = GhostConv(c_, c_, 3, 1)
290
+ self.cv4 = GhostConv(c_, c_, 1, 1)
291
+ self.cv5 = GhostConv(4 * c_, c_, 1, 1)
292
+ self.cv6 = GhostConv(c_, c_, 3, 1)
293
+ self.cv7 = GhostConv(2 * c_, c2, 1, 1)
294
+
295
+
296
+ class GhostStem(Stem):
297
+ # Stem
298
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
299
+ super().__init__(c1, c2, k, s, p, g, act)
300
+ c_ = int(c2/2) # hidden channels
301
+ self.cv1 = GhostConv(c1, c_, 3, 2)
302
+ self.cv2 = GhostConv(c_, c_, 1, 1)
303
+ self.cv3 = GhostConv(c_, c_, 3, 2)
304
+ self.cv4 = GhostConv(2 * c_, c2, 1, 1)
305
+
306
+
307
+ class BottleneckCSPA(nn.Module):
308
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
309
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
310
+ super(BottleneckCSPA, self).__init__()
311
+ c_ = int(c2 * e) # hidden channels
312
+ self.cv1 = Conv(c1, c_, 1, 1)
313
+ self.cv2 = Conv(c1, c_, 1, 1)
314
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
315
+ self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
316
+
317
+ def forward(self, x):
318
+ y1 = self.m(self.cv1(x))
319
+ y2 = self.cv2(x)
320
+ return self.cv3(torch.cat((y1, y2), dim=1))
321
+
322
+
323
+ class BottleneckCSPB(nn.Module):
324
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
325
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
326
+ super(BottleneckCSPB, self).__init__()
327
+ c_ = int(c2) # hidden channels
328
+ self.cv1 = Conv(c1, c_, 1, 1)
329
+ self.cv2 = Conv(c_, c_, 1, 1)
330
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
331
+ self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
332
+
333
+ def forward(self, x):
334
+ x1 = self.cv1(x)
335
+ y1 = self.m(x1)
336
+ y2 = self.cv2(x1)
337
+ return self.cv3(torch.cat((y1, y2), dim=1))
338
+
339
+
340
+ class BottleneckCSPC(nn.Module):
341
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
342
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
343
+ super(BottleneckCSPC, self).__init__()
344
+ c_ = int(c2 * e) # hidden channels
345
+ self.cv1 = Conv(c1, c_, 1, 1)
346
+ self.cv2 = Conv(c1, c_, 1, 1)
347
+ self.cv3 = Conv(c_, c_, 1, 1)
348
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
349
+ self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
350
+
351
+ def forward(self, x):
352
+ y1 = self.cv3(self.m(self.cv1(x)))
353
+ y2 = self.cv2(x)
354
+ return self.cv4(torch.cat((y1, y2), dim=1))
355
+
356
+
357
+ class ResCSPA(BottleneckCSPA):
358
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
359
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
360
+ super().__init__(c1, c2, n, shortcut, g, e)
361
+ c_ = int(c2 * e) # hidden channels
362
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
363
+
364
+
365
+ class ResCSPB(BottleneckCSPB):
366
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
367
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
368
+ super().__init__(c1, c2, n, shortcut, g, e)
369
+ c_ = int(c2) # hidden channels
370
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
371
+
372
+
373
+ class ResCSPC(BottleneckCSPC):
374
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
375
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
376
+ super().__init__(c1, c2, n, shortcut, g, e)
377
+ c_ = int(c2 * e) # hidden channels
378
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
379
+
380
+
381
+ class ResXCSPA(ResCSPA):
382
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
383
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
384
+ super().__init__(c1, c2, n, shortcut, g, e)
385
+ c_ = int(c2 * e) # hidden channels
386
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
387
+
388
+
389
+ class ResXCSPB(ResCSPB):
390
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
391
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
392
+ super().__init__(c1, c2, n, shortcut, g, e)
393
+ c_ = int(c2) # hidden channels
394
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
395
+
396
+
397
+ class ResXCSPC(ResCSPC):
398
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
399
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
400
+ super().__init__(c1, c2, n, shortcut, g, e)
401
+ c_ = int(c2 * e) # hidden channels
402
+ self.m = nn.Sequential(*[Res(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
403
+
404
+
405
+ class GhostCSPA(BottleneckCSPA):
406
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
407
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
408
+ super().__init__(c1, c2, n, shortcut, g, e)
409
+ c_ = int(c2 * e) # hidden channels
410
+ self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
411
+
412
+
413
+ class GhostCSPB(BottleneckCSPB):
414
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
415
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
416
+ super().__init__(c1, c2, n, shortcut, g, e)
417
+ c_ = int(c2) # hidden channels
418
+ self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
419
+
420
+
421
+ class GhostCSPC(BottleneckCSPC):
422
+ # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
423
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
424
+ super().__init__(c1, c2, n, shortcut, g, e)
425
+ c_ = int(c2 * e) # hidden channels
426
+ self.m = nn.Sequential(*[Ghost(c_, c_) for _ in range(n)])
427
+
428
+ ##### end of cspnet #####
429
+
430
+
431
+ ##### yolor #####
432
+
433
+ class ImplicitA(nn.Module):
434
+ def __init__(self, channel, mean=0., std=.02):
435
+ super(ImplicitA, self).__init__()
436
+ self.channel = channel
437
+ self.mean = mean
438
+ self.std = std
439
+ self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
440
+ nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
441
+
442
+ def forward(self, x):
443
+ return self.implicit + x
444
+
445
+
446
+ class ImplicitM(nn.Module):
447
+ def __init__(self, channel, mean=0., std=.02):
448
+ super(ImplicitM, self).__init__()
449
+ self.channel = channel
450
+ self.mean = mean
451
+ self.std = std
452
+ self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
453
+ nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
454
+
455
+ def forward(self, x):
456
+ return self.implicit * x
457
+
458
+ ##### end of yolor #####
459
+
460
+
461
+ ##### repvgg #####
462
+
463
+ class RepConv(nn.Module):
464
+ # Represented convolution
465
+ # https://arxiv.org/abs/2101.03697
466
+
467
+ def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True, deploy=False):
468
+ super(RepConv, self).__init__()
469
+
470
+ self.deploy = deploy
471
+ self.groups = g
472
+ self.in_channels = c1
473
+ self.out_channels = c2
474
+
475
+ assert k == 3
476
+ assert autopad(k, p) == 1
477
+
478
+ padding_11 = autopad(k, p) - k // 2
479
+
480
+ self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
481
+
482
+ if deploy:
483
+ self.rbr_reparam = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=True)
484
+
485
+ else:
486
+ self.rbr_identity = (nn.BatchNorm2d(num_features=c1) if c2 == c1 and s == 1 else None)
487
+
488
+ self.rbr_dense = nn.Sequential(
489
+ nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False),
490
+ nn.BatchNorm2d(num_features=c2),
491
+ )
492
+
493
+ self.rbr_1x1 = nn.Sequential(
494
+ nn.Conv2d( c1, c2, 1, s, padding_11, groups=g, bias=False),
495
+ nn.BatchNorm2d(num_features=c2),
496
+ )
497
+
498
+ def forward(self, inputs):
499
+ if hasattr(self, "rbr_reparam"):
500
+ return self.act(self.rbr_reparam(inputs))
501
+
502
+ if self.rbr_identity is None:
503
+ id_out = 0
504
+ else:
505
+ id_out = self.rbr_identity(inputs)
506
+
507
+ return self.act(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
508
+
509
+ def get_equivalent_kernel_bias(self):
510
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
511
+ kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
512
+ kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
513
+ return (
514
+ kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid,
515
+ bias3x3 + bias1x1 + biasid,
516
+ )
517
+
518
+ def _pad_1x1_to_3x3_tensor(self, kernel1x1):
519
+ if kernel1x1 is None:
520
+ return 0
521
+ else:
522
+ return nn.functional.pad(kernel1x1, [1, 1, 1, 1])
523
+
524
+ def _fuse_bn_tensor(self, branch):
525
+ if branch is None:
526
+ return 0, 0
527
+ if isinstance(branch, nn.Sequential):
528
+ kernel = branch[0].weight
529
+ running_mean = branch[1].running_mean
530
+ running_var = branch[1].running_var
531
+ gamma = branch[1].weight
532
+ beta = branch[1].bias
533
+ eps = branch[1].eps
534
+ else:
535
+ assert isinstance(branch, nn.BatchNorm2d)
536
+ if not hasattr(self, "id_tensor"):
537
+ input_dim = self.in_channels // self.groups
538
+ kernel_value = np.zeros(
539
+ (self.in_channels, input_dim, 3, 3), dtype=np.float32
540
+ )
541
+ for i in range(self.in_channels):
542
+ kernel_value[i, i % input_dim, 1, 1] = 1
543
+ self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
544
+ kernel = self.id_tensor
545
+ running_mean = branch.running_mean
546
+ running_var = branch.running_var
547
+ gamma = branch.weight
548
+ beta = branch.bias
549
+ eps = branch.eps
550
+ std = (running_var + eps).sqrt()
551
+ t = (gamma / std).reshape(-1, 1, 1, 1)
552
+ return kernel * t, beta - running_mean * gamma / std
553
+
554
+ def repvgg_convert(self):
555
+ kernel, bias = self.get_equivalent_kernel_bias()
556
+ return (
557
+ kernel.detach().cpu().numpy(),
558
+ bias.detach().cpu().numpy(),
559
+ )
560
+
561
+ def fuse_conv_bn(self, conv, bn):
562
+
563
+ std = (bn.running_var + bn.eps).sqrt()
564
+ bias = bn.bias - bn.running_mean * bn.weight / std
565
+
566
+ t = (bn.weight / std).reshape(-1, 1, 1, 1)
567
+ weights = conv.weight * t
568
+
569
+ bn = nn.Identity()
570
+ conv = nn.Conv2d(in_channels = conv.in_channels,
571
+ out_channels = conv.out_channels,
572
+ kernel_size = conv.kernel_size,
573
+ stride=conv.stride,
574
+ padding = conv.padding,
575
+ dilation = conv.dilation,
576
+ groups = conv.groups,
577
+ bias = True,
578
+ padding_mode = conv.padding_mode)
579
+
580
+ conv.weight = torch.nn.Parameter(weights)
581
+ conv.bias = torch.nn.Parameter(bias)
582
+ return conv
583
+
584
+ def fuse_repvgg_block(self):
585
+ if self.deploy:
586
+ return
587
+ print(f"RepConv.fuse_repvgg_block")
588
+
589
+ self.rbr_dense = self.fuse_conv_bn(self.rbr_dense[0], self.rbr_dense[1])
590
+
591
+ self.rbr_1x1 = self.fuse_conv_bn(self.rbr_1x1[0], self.rbr_1x1[1])
592
+ rbr_1x1_bias = self.rbr_1x1.bias
593
+ weight_1x1_expanded = torch.nn.functional.pad(self.rbr_1x1.weight, [1, 1, 1, 1])
594
+
595
+ # Fuse self.rbr_identity
596
+ if (isinstance(self.rbr_identity, nn.BatchNorm2d) or isinstance(self.rbr_identity, nn.modules.batchnorm.SyncBatchNorm)):
597
+ # print(f"fuse: rbr_identity == BatchNorm2d or SyncBatchNorm")
598
+ identity_conv_1x1 = nn.Conv2d(
599
+ in_channels=self.in_channels,
600
+ out_channels=self.out_channels,
601
+ kernel_size=1,
602
+ stride=1,
603
+ padding=0,
604
+ groups=self.groups,
605
+ bias=False)
606
+ identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.to(self.rbr_1x1.weight.data.device)
607
+ identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.squeeze().squeeze()
608
+ # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
609
+ identity_conv_1x1.weight.data.fill_(0.0)
610
+ identity_conv_1x1.weight.data.fill_diagonal_(1.0)
611
+ identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.unsqueeze(2).unsqueeze(3)
612
+ # print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")
613
+
614
+ identity_conv_1x1 = self.fuse_conv_bn(identity_conv_1x1, self.rbr_identity)
615
+ bias_identity_expanded = identity_conv_1x1.bias
616
+ weight_identity_expanded = torch.nn.functional.pad(identity_conv_1x1.weight, [1, 1, 1, 1])
617
+ else:
618
+ # print(f"fuse: rbr_identity != BatchNorm2d, rbr_identity = {self.rbr_identity}")
619
+ bias_identity_expanded = torch.nn.Parameter( torch.zeros_like(rbr_1x1_bias) )
620
+ weight_identity_expanded = torch.nn.Parameter( torch.zeros_like(weight_1x1_expanded) )
621
+
622
+
623
+ #print(f"self.rbr_1x1.weight = {self.rbr_1x1.weight.shape}, ")
624
+ #print(f"weight_1x1_expanded = {weight_1x1_expanded.shape}, ")
625
+ #print(f"self.rbr_dense.weight = {self.rbr_dense.weight.shape}, ")
626
+
627
+ self.rbr_dense.weight = torch.nn.Parameter(self.rbr_dense.weight + weight_1x1_expanded + weight_identity_expanded)
628
+ self.rbr_dense.bias = torch.nn.Parameter(self.rbr_dense.bias + rbr_1x1_bias + bias_identity_expanded)
629
+
630
+ self.rbr_reparam = self.rbr_dense
631
+ self.deploy = True
632
+
633
+ if self.rbr_identity is not None:
634
+ del self.rbr_identity
635
+ self.rbr_identity = None
636
+
637
+ if self.rbr_1x1 is not None:
638
+ del self.rbr_1x1
639
+ self.rbr_1x1 = None
640
+
641
+ if self.rbr_dense is not None:
642
+ del self.rbr_dense
643
+ self.rbr_dense = None
644
+
645
+
646
+ class RepBottleneck(Bottleneck):
647
+ # Standard bottleneck
648
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
649
+ super().__init__(c1, c2, shortcut=True, g=1, e=0.5)
650
+ c_ = int(c2 * e) # hidden channels
651
+ self.cv2 = RepConv(c_, c2, 3, 1, g=g)
652
+
653
+
654
+ class RepBottleneckCSPA(BottleneckCSPA):
655
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
656
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
657
+ super().__init__(c1, c2, n, shortcut, g, e)
658
+ c_ = int(c2 * e) # hidden channels
659
+ self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
660
+
661
+
662
+ class RepBottleneckCSPB(BottleneckCSPB):
663
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
664
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
665
+ super().__init__(c1, c2, n, shortcut, g, e)
666
+ c_ = int(c2) # hidden channels
667
+ self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
668
+
669
+
670
+ class RepBottleneckCSPC(BottleneckCSPC):
671
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
672
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
673
+ super().__init__(c1, c2, n, shortcut, g, e)
674
+ c_ = int(c2 * e) # hidden channels
675
+ self.m = nn.Sequential(*[RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
676
+
677
+
678
+ class RepRes(Res):
679
+ # Standard bottleneck
680
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
681
+ super().__init__(c1, c2, shortcut, g, e)
682
+ c_ = int(c2 * e) # hidden channels
683
+ self.cv2 = RepConv(c_, c_, 3, 1, g=g)
684
+
685
+
686
+ class RepResCSPA(ResCSPA):
687
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
688
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
689
+ super().__init__(c1, c2, n, shortcut, g, e)
690
+ c_ = int(c2 * e) # hidden channels
691
+ self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
692
+
693
+
694
+ class RepResCSPB(ResCSPB):
695
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
696
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
697
+ super().__init__(c1, c2, n, shortcut, g, e)
698
+ c_ = int(c2) # hidden channels
699
+ self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
700
+
701
+
702
+ class RepResCSPC(ResCSPC):
703
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
704
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
705
+ super().__init__(c1, c2, n, shortcut, g, e)
706
+ c_ = int(c2 * e) # hidden channels
707
+ self.m = nn.Sequential(*[RepRes(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
708
+
709
+
710
+ class RepResX(ResX):
711
+ # Standard bottleneck
712
+ def __init__(self, c1, c2, shortcut=True, g=32, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
713
+ super().__init__(c1, c2, shortcut, g, e)
714
+ c_ = int(c2 * e) # hidden channels
715
+ self.cv2 = RepConv(c_, c_, 3, 1, g=g)
716
+
717
+
718
+ class RepResXCSPA(ResXCSPA):
719
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
720
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
721
+ super().__init__(c1, c2, n, shortcut, g, e)
722
+ c_ = int(c2 * e) # hidden channels
723
+ self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
724
+
725
+
726
+ class RepResXCSPB(ResXCSPB):
727
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
728
+ def __init__(self, c1, c2, n=1, shortcut=False, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
729
+ super().__init__(c1, c2, n, shortcut, g, e)
730
+ c_ = int(c2) # hidden channels
731
+ self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
732
+
733
+
734
+ class RepResXCSPC(ResXCSPC):
735
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
736
+ def __init__(self, c1, c2, n=1, shortcut=True, g=32, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
737
+ super().__init__(c1, c2, n, shortcut, g, e)
738
+ c_ = int(c2 * e) # hidden channels
739
+ self.m = nn.Sequential(*[RepResX(c_, c_, shortcut, g, e=0.5) for _ in range(n)])
740
+
741
+ ##### end of repvgg #####
742
+
743
+
744
+ ##### transformer #####
745
+
746
+ class TransformerLayer(nn.Module):
747
+ # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
748
+ def __init__(self, c, num_heads):
749
+ super().__init__()
750
+ self.q = nn.Linear(c, c, bias=False)
751
+ self.k = nn.Linear(c, c, bias=False)
752
+ self.v = nn.Linear(c, c, bias=False)
753
+ self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
754
+ self.fc1 = nn.Linear(c, c, bias=False)
755
+ self.fc2 = nn.Linear(c, c, bias=False)
756
+
757
+ def forward(self, x):
758
+ x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
759
+ x = self.fc2(self.fc1(x)) + x
760
+ return x
761
+
762
+
763
+ class TransformerBlock(nn.Module):
764
+ # Vision Transformer https://arxiv.org/abs/2010.11929
765
+ def __init__(self, c1, c2, num_heads, num_layers):
766
+ super().__init__()
767
+ self.conv = None
768
+ if c1 != c2:
769
+ self.conv = Conv(c1, c2)
770
+ self.linear = nn.Linear(c2, c2) # learnable position embedding
771
+ self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)])
772
+ self.c2 = c2
773
+
774
+ def forward(self, x):
775
+ if self.conv is not None:
776
+ x = self.conv(x)
777
+ b, _, w, h = x.shape
778
+ p = x.flatten(2)
779
+ p = p.unsqueeze(0)
780
+ p = p.transpose(0, 3)
781
+ p = p.squeeze(3)
782
+ e = self.linear(p)
783
+ x = p + e
784
+
785
+ x = self.tr(x)
786
+ x = x.unsqueeze(3)
787
+ x = x.transpose(0, 3)
788
+ x = x.reshape(b, self.c2, w, h)
789
+ return x
790
+
791
+ ##### end of transformer #####
792
+
793
+
794
+ ##### yolov5 #####
795
+
796
+ class Focus(nn.Module):
797
+ # Focus wh information into c-space
798
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
799
+ super(Focus, self).__init__()
800
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
801
+ # self.contract = Contract(gain=2)
802
+
803
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
804
+ return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
805
+ # return self.conv(self.contract(x))
806
+
807
+
808
+ class SPPF(nn.Module):
809
+ # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
810
+ def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
811
+ super().__init__()
812
+ c_ = c1 // 2 # hidden channels
813
+ self.cv1 = Conv(c1, c_, 1, 1)
814
+ self.cv2 = Conv(c_ * 4, c2, 1, 1)
815
+ self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
816
+
817
+ def forward(self, x):
818
+ x = self.cv1(x)
819
+ y1 = self.m(x)
820
+ y2 = self.m(y1)
821
+ return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
822
+
823
+
824
+ class Contract(nn.Module):
825
+ # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
826
+ def __init__(self, gain=2):
827
+ super().__init__()
828
+ self.gain = gain
829
+
830
+ def forward(self, x):
831
+ N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
832
+ s = self.gain
833
+ x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
834
+ x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
835
+ return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
836
+
837
+
838
+ class Expand(nn.Module):
839
+ # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
840
+ def __init__(self, gain=2):
841
+ super().__init__()
842
+ self.gain = gain
843
+
844
+ def forward(self, x):
845
+ N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
846
+ s = self.gain
847
+ x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
848
+ x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
849
+ return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
850
+
851
+
852
+ class NMS(nn.Module):
853
+ # Non-Maximum Suppression (NMS) module
854
+ conf = 0.25 # confidence threshold
855
+ iou = 0.45 # IoU threshold
856
+ classes = None # (optional list) filter by class
857
+
858
+ def __init__(self):
859
+ super(NMS, self).__init__()
860
+
861
+ def forward(self, x):
862
+ return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
863
+
864
+
865
+ class autoShape(nn.Module):
866
+ # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
867
+ conf = 0.25 # NMS confidence threshold
868
+ iou = 0.45 # NMS IoU threshold
869
+ classes = None # (optional list) filter by class
870
+
871
+ def __init__(self, model):
872
+ super(autoShape, self).__init__()
873
+ self.model = model.eval()
874
+
875
+ def autoshape(self):
876
+ print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
877
+ return self
878
+
879
+ @torch.no_grad()
880
+ def forward(self, imgs, size=640, augment=False, profile=False):
881
+ # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
882
+ # filename: imgs = 'data/samples/zidane.jpg'
883
+ # URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
884
+ # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
885
+ # PIL: = Image.open('image.jpg') # HWC x(640,1280,3)
886
+ # numpy: = np.zeros((640,1280,3)) # HWC
887
+ # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
888
+ # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
889
+
890
+ t = [time_synchronized()]
891
+ p = next(self.model.parameters()) # for device and type
892
+ if isinstance(imgs, torch.Tensor): # torch
893
+ with amp.autocast(enabled=p.device.type != 'cpu'):
894
+ return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
895
+
896
+ # Pre-process
897
+ n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
898
+ shape0, shape1, files = [], [], [] # image and inference shapes, filenames
899
+ for i, im in enumerate(imgs):
900
+ f = f'image{i}' # filename
901
+ if isinstance(im, str): # filename or uri
902
+ im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im
903
+ elif isinstance(im, Image.Image): # PIL Image
904
+ im, f = np.asarray(im), getattr(im, 'filename', f) or f
905
+ files.append(Path(f).with_suffix('.jpg').name)
906
+ if im.shape[0] < 5: # image in CHW
907
+ im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
908
+ im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
909
+ s = im.shape[:2] # HWC
910
+ shape0.append(s) # image shape
911
+ g = (size / max(s)) # gain
912
+ shape1.append([y * g for y in s])
913
+ imgs[i] = im # update
914
+ shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
915
+ x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
916
+ x = np.stack(x, 0) if n > 1 else x[0][None] # stack
917
+ x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
918
+ x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
919
+ t.append(time_synchronized())
920
+
921
+ with amp.autocast(enabled=p.device.type != 'cpu'):
922
+ # Inference
923
+ y = self.model(x, augment, profile)[0] # forward
924
+ t.append(time_synchronized())
925
+
926
+ # Post-process
927
+ y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
928
+ for i in range(n):
929
+ scale_coords(shape1, y[i][:, :4], shape0[i])
930
+
931
+ t.append(time_synchronized())
932
+ return Detections(imgs, y, files, t, self.names, x.shape)
933
+
934
+
935
+ class Detections:
936
+ # detections class for YOLOv5 inference results
937
+ def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
938
+ super(Detections, self).__init__()
939
+ d = pred[0].device # device
940
+ gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
941
+ self.imgs = imgs # list of images as numpy arrays
942
+ self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
943
+ self.names = names # class names
944
+ self.files = files # image filenames
945
+ self.xyxy = pred # xyxy pixels
946
+ self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
947
+ self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
948
+ self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
949
+ self.n = len(self.pred) # number of images (batch size)
950
+ self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
951
+ self.s = shape # inference BCHW shape
952
+
953
+ def display(self, pprint=False, show=False, save=False, render=False, save_dir=''):
954
+ colors = color_list()
955
+ for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
956
+ str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
957
+ if pred is not None:
958
+ for c in pred[:, -1].unique():
959
+ n = (pred[:, -1] == c).sum() # detections per class
960
+ str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
961
+ if show or save or render:
962
+ for *box, conf, cls in pred: # xyxy, confidence, class
963
+ label = f'{self.names[int(cls)]} {conf:.2f}'
964
+ plot_one_box(box, img, label=label, color=colors[int(cls) % 10])
965
+ img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
966
+ if pprint:
967
+ print(str.rstrip(', '))
968
+ if show:
969
+ img.show(self.files[i]) # show
970
+ if save:
971
+ f = self.files[i]
972
+ img.save(Path(save_dir) / f) # save
973
+ print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n')
974
+ if render:
975
+ self.imgs[i] = np.asarray(img)
976
+
977
+ def print(self):
978
+ self.display(pprint=True) # print results
979
+ print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
980
+
981
+ def show(self):
982
+ self.display(show=True) # show results
983
+
984
+ def save(self, save_dir='runs/hub/exp'):
985
+ save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp') # increment save_dir
986
+ Path(save_dir).mkdir(parents=True, exist_ok=True)
987
+ self.display(save=True, save_dir=save_dir) # save results
988
+
989
+ def render(self):
990
+ self.display(render=True) # render results
991
+ return self.imgs
992
+
993
+ def pandas(self):
994
+ # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
995
+ new = copy(self) # return copy
996
+ ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
997
+ cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
998
+ for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
999
+ a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
1000
+ setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
1001
+ return new
1002
+
1003
+ def tolist(self):
1004
+ # return a list of Detections objects, i.e. 'for result in results.tolist():'
1005
+ x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)]
1006
+ for d in x:
1007
+ for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
1008
+ setattr(d, k, getattr(d, k)[0]) # pop out of list
1009
+ return x
1010
+
1011
+ def __len__(self):
1012
+ return self.n
1013
+
1014
+
1015
+ class Classify(nn.Module):
1016
+ # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
1017
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
1018
+ super(Classify, self).__init__()
1019
+ self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
1020
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
1021
+ self.flat = nn.Flatten()
1022
+
1023
+ def forward(self, x):
1024
+ z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
1025
+ return self.flat(self.conv(z)) # flatten to x(b,c2)
1026
+
1027
+ ##### end of yolov5 ######
1028
+
1029
+
1030
+ ##### orepa #####
1031
+
1032
+ def transI_fusebn(kernel, bn):
1033
+ gamma = bn.weight
1034
+ std = (bn.running_var + bn.eps).sqrt()
1035
+ return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / std
1036
+
1037
+
1038
+ class ConvBN(nn.Module):
1039
+ def __init__(self, in_channels, out_channels, kernel_size,
1040
+ stride=1, padding=0, dilation=1, groups=1, deploy=False, nonlinear=None):
1041
+ super().__init__()
1042
+ if nonlinear is None:
1043
+ self.nonlinear = nn.Identity()
1044
+ else:
1045
+ self.nonlinear = nonlinear
1046
+ if deploy:
1047
+ self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
1048
+ stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
1049
+ else:
1050
+ self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
1051
+ stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)
1052
+ self.bn = nn.BatchNorm2d(num_features=out_channels)
1053
+
1054
+ def forward(self, x):
1055
+ if hasattr(self, 'bn'):
1056
+ return self.nonlinear(self.bn(self.conv(x)))
1057
+ else:
1058
+ return self.nonlinear(self.conv(x))
1059
+
1060
+ def switch_to_deploy(self):
1061
+ kernel, bias = transI_fusebn(self.conv.weight, self.bn)
1062
+ conv = nn.Conv2d(in_channels=self.conv.in_channels, out_channels=self.conv.out_channels, kernel_size=self.conv.kernel_size,
1063
+ stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups, bias=True)
1064
+ conv.weight.data = kernel
1065
+ conv.bias.data = bias
1066
+ for para in self.parameters():
1067
+ para.detach_()
1068
+ self.__delattr__('conv')
1069
+ self.__delattr__('bn')
1070
+ self.conv = conv
1071
+
1072
+ class OREPA_3x3_RepConv(nn.Module):
1073
+
1074
+ def __init__(self, in_channels, out_channels, kernel_size,
1075
+ stride=1, padding=0, dilation=1, groups=1,
1076
+ internal_channels_1x1_3x3=None,
1077
+ deploy=False, nonlinear=None, single_init=False):
1078
+ super(OREPA_3x3_RepConv, self).__init__()
1079
+ self.deploy = deploy
1080
+
1081
+ if nonlinear is None:
1082
+ self.nonlinear = nn.Identity()
1083
+ else:
1084
+ self.nonlinear = nonlinear
1085
+
1086
+ self.kernel_size = kernel_size
1087
+ self.in_channels = in_channels
1088
+ self.out_channels = out_channels
1089
+ self.groups = groups
1090
+ assert padding == kernel_size // 2
1091
+
1092
+ self.stride = stride
1093
+ self.padding = padding
1094
+ self.dilation = dilation
1095
+
1096
+ self.branch_counter = 0
1097
+
1098
+ self.weight_rbr_origin = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), kernel_size, kernel_size))
1099
+ nn.init.kaiming_uniform_(self.weight_rbr_origin, a=math.sqrt(1.0))
1100
+ self.branch_counter += 1
1101
+
1102
+
1103
+ if groups < out_channels:
1104
+ self.weight_rbr_avg_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
1105
+ self.weight_rbr_pfir_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
1106
+ nn.init.kaiming_uniform_(self.weight_rbr_avg_conv, a=1.0)
1107
+ nn.init.kaiming_uniform_(self.weight_rbr_pfir_conv, a=1.0)
1108
+ self.weight_rbr_avg_conv.data
1109
+ self.weight_rbr_pfir_conv.data
1110
+ self.register_buffer('weight_rbr_avg_avg', torch.ones(kernel_size, kernel_size).mul(1.0/kernel_size/kernel_size))
1111
+ self.branch_counter += 1
1112
+
1113
+ else:
1114
+ raise NotImplementedError
1115
+ self.branch_counter += 1
1116
+
1117
+ if internal_channels_1x1_3x3 is None:
1118
+ internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels # For mobilenet, it is better to have 2X internal channels
1119
+
1120
+ if internal_channels_1x1_3x3 == in_channels:
1121
+ self.weight_rbr_1x1_kxk_idconv1 = nn.Parameter(torch.zeros(in_channels, int(in_channels/self.groups), 1, 1))
1122
+ id_value = np.zeros((in_channels, int(in_channels/self.groups), 1, 1))
1123
+ for i in range(in_channels):
1124
+ id_value[i, i % int(in_channels/self.groups), 0, 0] = 1
1125
+ id_tensor = torch.from_numpy(id_value).type_as(self.weight_rbr_1x1_kxk_idconv1)
1126
+ self.register_buffer('id_tensor', id_tensor)
1127
+
1128
+ else:
1129
+ self.weight_rbr_1x1_kxk_conv1 = nn.Parameter(torch.Tensor(internal_channels_1x1_3x3, int(in_channels/self.groups), 1, 1))
1130
+ nn.init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv1, a=math.sqrt(1.0))
1131
+ self.weight_rbr_1x1_kxk_conv2 = nn.Parameter(torch.Tensor(out_channels, int(internal_channels_1x1_3x3/self.groups), kernel_size, kernel_size))
1132
+ nn.init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv2, a=math.sqrt(1.0))
1133
+ self.branch_counter += 1
1134
+
1135
+ expand_ratio = 8
1136
+ self.weight_rbr_gconv_dw = nn.Parameter(torch.Tensor(in_channels*expand_ratio, 1, kernel_size, kernel_size))
1137
+ self.weight_rbr_gconv_pw = nn.Parameter(torch.Tensor(out_channels, in_channels*expand_ratio, 1, 1))
1138
+ nn.init.kaiming_uniform_(self.weight_rbr_gconv_dw, a=math.sqrt(1.0))
1139
+ nn.init.kaiming_uniform_(self.weight_rbr_gconv_pw, a=math.sqrt(1.0))
1140
+ self.branch_counter += 1
1141
+
1142
+ if out_channels == in_channels and stride == 1:
1143
+ self.branch_counter += 1
1144
+
1145
+ self.vector = nn.Parameter(torch.Tensor(self.branch_counter, self.out_channels))
1146
+ self.bn = nn.BatchNorm2d(out_channels)
1147
+
1148
+ self.fre_init()
1149
+
1150
+ nn.init.constant_(self.vector[0, :], 0.25) #origin
1151
+ nn.init.constant_(self.vector[1, :], 0.25) #avg
1152
+ nn.init.constant_(self.vector[2, :], 0.0) #prior
1153
+ nn.init.constant_(self.vector[3, :], 0.5) #1x1_kxk
1154
+ nn.init.constant_(self.vector[4, :], 0.5) #dws_conv
1155
+
1156
+
1157
+ def fre_init(self):
1158
+ prior_tensor = torch.Tensor(self.out_channels, self.kernel_size, self.kernel_size)
1159
+ half_fg = self.out_channels/2
1160
+ for i in range(self.out_channels):
1161
+ for h in range(3):
1162
+ for w in range(3):
1163
+ if i < half_fg:
1164
+ prior_tensor[i, h, w] = math.cos(math.pi*(h+0.5)*(i+1)/3)
1165
+ else:
1166
+ prior_tensor[i, h, w] = math.cos(math.pi*(w+0.5)*(i+1-half_fg)/3)
1167
+
1168
+ self.register_buffer('weight_rbr_prior', prior_tensor)
1169
+
1170
+ def weight_gen(self):
1171
+
1172
+ weight_rbr_origin = torch.einsum('oihw,o->oihw', self.weight_rbr_origin, self.vector[0, :])
1173
+
1174
+ weight_rbr_avg = torch.einsum('oihw,o->oihw', torch.einsum('oihw,hw->oihw', self.weight_rbr_avg_conv, self.weight_rbr_avg_avg), self.vector[1, :])
1175
+
1176
+ weight_rbr_pfir = torch.einsum('oihw,o->oihw', torch.einsum('oihw,ohw->oihw', self.weight_rbr_pfir_conv, self.weight_rbr_prior), self.vector[2, :])
1177
+
1178
+ weight_rbr_1x1_kxk_conv1 = None
1179
+ if hasattr(self, 'weight_rbr_1x1_kxk_idconv1'):
1180
+ weight_rbr_1x1_kxk_conv1 = (self.weight_rbr_1x1_kxk_idconv1 + self.id_tensor).squeeze()
1181
+ elif hasattr(self, 'weight_rbr_1x1_kxk_conv1'):
1182
+ weight_rbr_1x1_kxk_conv1 = self.weight_rbr_1x1_kxk_conv1.squeeze()
1183
+ else:
1184
+ raise NotImplementedError
1185
+ weight_rbr_1x1_kxk_conv2 = self.weight_rbr_1x1_kxk_conv2
1186
+
1187
+ if self.groups > 1:
1188
+ g = self.groups
1189
+ t, ig = weight_rbr_1x1_kxk_conv1.size()
1190
+ o, tg, h, w = weight_rbr_1x1_kxk_conv2.size()
1191
+ weight_rbr_1x1_kxk_conv1 = weight_rbr_1x1_kxk_conv1.view(g, int(t/g), ig)
1192
+ weight_rbr_1x1_kxk_conv2 = weight_rbr_1x1_kxk_conv2.view(g, int(o/g), tg, h, w)
1193
+ weight_rbr_1x1_kxk = torch.einsum('gti,gothw->goihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2).view(o, ig, h, w)
1194
+ else:
1195
+ weight_rbr_1x1_kxk = torch.einsum('ti,othw->oihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2)
1196
+
1197
+ weight_rbr_1x1_kxk = torch.einsum('oihw,o->oihw', weight_rbr_1x1_kxk, self.vector[3, :])
1198
+
1199
+ weight_rbr_gconv = self.dwsc2full(self.weight_rbr_gconv_dw, self.weight_rbr_gconv_pw, self.in_channels)
1200
+ weight_rbr_gconv = torch.einsum('oihw,o->oihw', weight_rbr_gconv, self.vector[4, :])
1201
+
1202
+ weight = weight_rbr_origin + weight_rbr_avg + weight_rbr_1x1_kxk + weight_rbr_pfir + weight_rbr_gconv
1203
+
1204
+ return weight
1205
+
1206
+ def dwsc2full(self, weight_dw, weight_pw, groups):
1207
+
1208
+ t, ig, h, w = weight_dw.size()
1209
+ o, _, _, _ = weight_pw.size()
1210
+ tg = int(t/groups)
1211
+ i = int(ig*groups)
1212
+ weight_dw = weight_dw.view(groups, tg, ig, h, w)
1213
+ weight_pw = weight_pw.squeeze().view(o, groups, tg)
1214
+
1215
+ weight_dsc = torch.einsum('gtihw,ogt->ogihw', weight_dw, weight_pw)
1216
+ return weight_dsc.view(o, i, h, w)
1217
+
1218
+ def forward(self, inputs):
1219
+ weight = self.weight_gen()
1220
+ out = F.conv2d(inputs, weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
1221
+
1222
+ return self.nonlinear(self.bn(out))
1223
+
1224
+ class RepConv_OREPA(nn.Module):
1225
+
1226
+ def __init__(self, c1, c2, k=3, s=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False, nonlinear=nn.SiLU()):
1227
+ super(RepConv_OREPA, self).__init__()
1228
+ self.deploy = deploy
1229
+ self.groups = groups
1230
+ self.in_channels = c1
1231
+ self.out_channels = c2
1232
+
1233
+ self.padding = padding
1234
+ self.dilation = dilation
1235
+ self.groups = groups
1236
+
1237
+ assert k == 3
1238
+ assert padding == 1
1239
+
1240
+ padding_11 = padding - k // 2
1241
+
1242
+ if nonlinear is None:
1243
+ self.nonlinearity = nn.Identity()
1244
+ else:
1245
+ self.nonlinearity = nonlinear
1246
+
1247
+ if use_se:
1248
+ self.se = SEBlock(self.out_channels, internal_neurons=self.out_channels // 16)
1249
+ else:
1250
+ self.se = nn.Identity()
1251
+
1252
+ if deploy:
1253
+ self.rbr_reparam = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=s,
1254
+ padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode)
1255
+
1256
+ else:
1257
+ self.rbr_identity = nn.BatchNorm2d(num_features=self.in_channels) if self.out_channels == self.in_channels and s == 1 else None
1258
+ self.rbr_dense = OREPA_3x3_RepConv(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=k, stride=s, padding=padding, groups=groups, dilation=1)
1259
+ self.rbr_1x1 = ConvBN(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=1, stride=s, padding=padding_11, groups=groups, dilation=1)
1260
+ print('RepVGG Block, identity = ', self.rbr_identity)
1261
+
1262
+
1263
+ def forward(self, inputs):
1264
+ if hasattr(self, 'rbr_reparam'):
1265
+ return self.nonlinearity(self.se(self.rbr_reparam(inputs)))
1266
+
1267
+ if self.rbr_identity is None:
1268
+ id_out = 0
1269
+ else:
1270
+ id_out = self.rbr_identity(inputs)
1271
+
1272
+ out1 = self.rbr_dense(inputs)
1273
+ out2 = self.rbr_1x1(inputs)
1274
+ out3 = id_out
1275
+ out = out1 + out2 + out3
1276
+
1277
+ return self.nonlinearity(self.se(out))
1278
+
1279
+
1280
+ # Optional. This improves the accuracy and facilitates quantization.
1281
+ # 1. Cancel the original weight decay on rbr_dense.conv.weight and rbr_1x1.conv.weight.
1282
+ # 2. Use like this.
1283
+ # loss = criterion(....)
1284
+ # for every RepVGGBlock blk:
1285
+ # loss += weight_decay_coefficient * 0.5 * blk.get_cust_L2()
1286
+ # optimizer.zero_grad()
1287
+ # loss.backward()
1288
+
1289
+ # Not used for OREPA
1290
+ def get_custom_L2(self):
1291
+ K3 = self.rbr_dense.weight_gen()
1292
+ K1 = self.rbr_1x1.conv.weight
1293
+ t3 = (self.rbr_dense.bn.weight / ((self.rbr_dense.bn.running_var + self.rbr_dense.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
1294
+ t1 = (self.rbr_1x1.bn.weight / ((self.rbr_1x1.bn.running_var + self.rbr_1x1.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
1295
+
1296
+ l2_loss_circle = (K3 ** 2).sum() - (K3[:, :, 1:2, 1:2] ** 2).sum() # The L2 loss of the "circle" of weights in 3x3 kernel. Use regular L2 on them.
1297
+ eq_kernel = K3[:, :, 1:2, 1:2] * t3 + K1 * t1 # The equivalent resultant central point of 3x3 kernel.
1298
+ l2_loss_eq_kernel = (eq_kernel ** 2 / (t3 ** 2 + t1 ** 2)).sum() # Normalize for an L2 coefficient comparable to regular L2.
1299
+ return l2_loss_eq_kernel + l2_loss_circle
1300
+
1301
+ def get_equivalent_kernel_bias(self):
1302
+ kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
1303
+ kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
1304
+ kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
1305
+ return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
1306
+
1307
+ def _pad_1x1_to_3x3_tensor(self, kernel1x1):
1308
+ if kernel1x1 is None:
1309
+ return 0
1310
+ else:
1311
+ return torch.nn.functional.pad(kernel1x1, [1,1,1,1])
1312
+
1313
+ def _fuse_bn_tensor(self, branch):
1314
+ if branch is None:
1315
+ return 0, 0
1316
+ if not isinstance(branch, nn.BatchNorm2d):
1317
+ if isinstance(branch, OREPA_3x3_RepConv):
1318
+ kernel = branch.weight_gen()
1319
+ elif isinstance(branch, ConvBN):
1320
+ kernel = branch.conv.weight
1321
+ else:
1322
+ raise NotImplementedError
1323
+ running_mean = branch.bn.running_mean
1324
+ running_var = branch.bn.running_var
1325
+ gamma = branch.bn.weight
1326
+ beta = branch.bn.bias
1327
+ eps = branch.bn.eps
1328
+ else:
1329
+ if not hasattr(self, 'id_tensor'):
1330
+ input_dim = self.in_channels // self.groups
1331
+ kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
1332
+ for i in range(self.in_channels):
1333
+ kernel_value[i, i % input_dim, 1, 1] = 1
1334
+ self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
1335
+ kernel = self.id_tensor
1336
+ running_mean = branch.running_mean
1337
+ running_var = branch.running_var
1338
+ gamma = branch.weight
1339
+ beta = branch.bias
1340
+ eps = branch.eps
1341
+ std = (running_var + eps).sqrt()
1342
+ t = (gamma / std).reshape(-1, 1, 1, 1)
1343
+ return kernel * t, beta - running_mean * gamma / std
1344
+
1345
+ def switch_to_deploy(self):
1346
+ if hasattr(self, 'rbr_reparam'):
1347
+ return
1348
+ print(f"RepConv_OREPA.switch_to_deploy")
1349
+ kernel, bias = self.get_equivalent_kernel_bias()
1350
+ self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.in_channels, out_channels=self.rbr_dense.out_channels,
1351
+ kernel_size=self.rbr_dense.kernel_size, stride=self.rbr_dense.stride,
1352
+ padding=self.rbr_dense.padding, dilation=self.rbr_dense.dilation, groups=self.rbr_dense.groups, bias=True)
1353
+ self.rbr_reparam.weight.data = kernel
1354
+ self.rbr_reparam.bias.data = bias
1355
+ for para in self.parameters():
1356
+ para.detach_()
1357
+ self.__delattr__('rbr_dense')
1358
+ self.__delattr__('rbr_1x1')
1359
+ if hasattr(self, 'rbr_identity'):
1360
+ self.__delattr__('rbr_identity')
1361
+
1362
+ ##### end of orepa #####
1363
+
1364
+
1365
+ ##### swin transformer #####
1366
+
1367
+ class WindowAttention(nn.Module):
1368
+
1369
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
1370
+
1371
+ super().__init__()
1372
+ self.dim = dim
1373
+ self.window_size = window_size # Wh, Ww
1374
+ self.num_heads = num_heads
1375
+ head_dim = dim // num_heads
1376
+ self.scale = qk_scale or head_dim ** -0.5
1377
+
1378
+ # define a parameter table of relative position bias
1379
+ self.relative_position_bias_table = nn.Parameter(
1380
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
1381
+
1382
+ # get pair-wise relative position index for each token inside the window
1383
+ coords_h = torch.arange(self.window_size[0])
1384
+ coords_w = torch.arange(self.window_size[1])
1385
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
1386
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
1387
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
1388
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
1389
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
1390
+ relative_coords[:, :, 1] += self.window_size[1] - 1
1391
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
1392
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
1393
+ self.register_buffer("relative_position_index", relative_position_index)
1394
+
1395
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
1396
+ self.attn_drop = nn.Dropout(attn_drop)
1397
+ self.proj = nn.Linear(dim, dim)
1398
+ self.proj_drop = nn.Dropout(proj_drop)
1399
+
1400
+ nn.init.normal_(self.relative_position_bias_table, std=.02)
1401
+ self.softmax = nn.Softmax(dim=-1)
1402
+
1403
+ def forward(self, x, mask=None):
1404
+
1405
+ B_, N, C = x.shape
1406
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
1407
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
1408
+
1409
+ q = q * self.scale
1410
+ attn = (q @ k.transpose(-2, -1))
1411
+
1412
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
1413
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
1414
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
1415
+ attn = attn + relative_position_bias.unsqueeze(0)
1416
+
1417
+ if mask is not None:
1418
+ nW = mask.shape[0]
1419
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
1420
+ attn = attn.view(-1, self.num_heads, N, N)
1421
+ attn = self.softmax(attn)
1422
+ else:
1423
+ attn = self.softmax(attn)
1424
+
1425
+ attn = self.attn_drop(attn)
1426
+
1427
+ # print(attn.dtype, v.dtype)
1428
+ try:
1429
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
1430
+ except:
1431
+ #print(attn.dtype, v.dtype)
1432
+ x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
1433
+ x = self.proj(x)
1434
+ x = self.proj_drop(x)
1435
+ return x
1436
+
1437
+ class Mlp(nn.Module):
1438
+
1439
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
1440
+ super().__init__()
1441
+ out_features = out_features or in_features
1442
+ hidden_features = hidden_features or in_features
1443
+ self.fc1 = nn.Linear(in_features, hidden_features)
1444
+ self.act = act_layer()
1445
+ self.fc2 = nn.Linear(hidden_features, out_features)
1446
+ self.drop = nn.Dropout(drop)
1447
+
1448
+ def forward(self, x):
1449
+ x = self.fc1(x)
1450
+ x = self.act(x)
1451
+ x = self.drop(x)
1452
+ x = self.fc2(x)
1453
+ x = self.drop(x)
1454
+ return x
1455
+
1456
+ def window_partition(x, window_size):
1457
+
1458
+ B, H, W, C = x.shape
1459
+ assert H % window_size == 0, 'feature map h and w can not divide by window size'
1460
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
1461
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
1462
+ return windows
1463
+
1464
+ def window_reverse(windows, window_size, H, W):
1465
+
1466
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
1467
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
1468
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
1469
+ return x
1470
+
1471
+
1472
+ class SwinTransformerLayer(nn.Module):
1473
+
1474
+ def __init__(self, dim, num_heads, window_size=8, shift_size=0,
1475
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
1476
+ act_layer=nn.SiLU, norm_layer=nn.LayerNorm):
1477
+ super().__init__()
1478
+ self.dim = dim
1479
+ self.num_heads = num_heads
1480
+ self.window_size = window_size
1481
+ self.shift_size = shift_size
1482
+ self.mlp_ratio = mlp_ratio
1483
+ # if min(self.input_resolution) <= self.window_size:
1484
+ # # if window size is larger than input resolution, we don't partition windows
1485
+ # self.shift_size = 0
1486
+ # self.window_size = min(self.input_resolution)
1487
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
1488
+
1489
+ self.norm1 = norm_layer(dim)
1490
+ self.attn = WindowAttention(
1491
+ dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
1492
+ qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
1493
+
1494
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
1495
+ self.norm2 = norm_layer(dim)
1496
+ mlp_hidden_dim = int(dim * mlp_ratio)
1497
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
1498
+
1499
+ def create_mask(self, H, W):
1500
+ # calculate attention mask for SW-MSA
1501
+ img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
1502
+ h_slices = (slice(0, -self.window_size),
1503
+ slice(-self.window_size, -self.shift_size),
1504
+ slice(-self.shift_size, None))
1505
+ w_slices = (slice(0, -self.window_size),
1506
+ slice(-self.window_size, -self.shift_size),
1507
+ slice(-self.shift_size, None))
1508
+ cnt = 0
1509
+ for h in h_slices:
1510
+ for w in w_slices:
1511
+ img_mask[:, h, w, :] = cnt
1512
+ cnt += 1
1513
+
1514
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
1515
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
1516
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
1517
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
1518
+
1519
+ return attn_mask
1520
+
1521
+ def forward(self, x):
1522
+ # reshape x[b c h w] to x[b l c]
1523
+ _, _, H_, W_ = x.shape
1524
+
1525
+ Padding = False
1526
+ if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
1527
+ Padding = True
1528
+ # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
1529
+ pad_r = (self.window_size - W_ % self.window_size) % self.window_size
1530
+ pad_b = (self.window_size - H_ % self.window_size) % self.window_size
1531
+ x = F.pad(x, (0, pad_r, 0, pad_b))
1532
+
1533
+ # print('2', x.shape)
1534
+ B, C, H, W = x.shape
1535
+ L = H * W
1536
+ x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
1537
+
1538
+ # create mask from init to forward
1539
+ if self.shift_size > 0:
1540
+ attn_mask = self.create_mask(H, W).to(x.device)
1541
+ else:
1542
+ attn_mask = None
1543
+
1544
+ shortcut = x
1545
+ x = self.norm1(x)
1546
+ x = x.view(B, H, W, C)
1547
+
1548
+ # cyclic shift
1549
+ if self.shift_size > 0:
1550
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
1551
+ else:
1552
+ shifted_x = x
1553
+
1554
+ # partition windows
1555
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
1556
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
1557
+
1558
+ # W-MSA/SW-MSA
1559
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
1560
+
1561
+ # merge windows
1562
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
1563
+ shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
1564
+
1565
+ # reverse cyclic shift
1566
+ if self.shift_size > 0:
1567
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
1568
+ else:
1569
+ x = shifted_x
1570
+ x = x.view(B, H * W, C)
1571
+
1572
+ # FFN
1573
+ x = shortcut + self.drop_path(x)
1574
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
1575
+
1576
+ x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
1577
+
1578
+ if Padding:
1579
+ x = x[:, :, :H_, :W_] # reverse padding
1580
+
1581
+ return x
1582
+
1583
+
1584
+ class SwinTransformerBlock(nn.Module):
1585
+ def __init__(self, c1, c2, num_heads, num_layers, window_size=8):
1586
+ super().__init__()
1587
+ self.conv = None
1588
+ if c1 != c2:
1589
+ self.conv = Conv(c1, c2)
1590
+
1591
+ # remove input_resolution
1592
+ self.blocks = nn.Sequential(*[SwinTransformerLayer(dim=c2, num_heads=num_heads, window_size=window_size,
1593
+ shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
1594
+
1595
+ def forward(self, x):
1596
+ if self.conv is not None:
1597
+ x = self.conv(x)
1598
+ x = self.blocks(x)
1599
+ return x
1600
+
1601
+
1602
+ class STCSPA(nn.Module):
1603
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1604
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1605
+ super(STCSPA, self).__init__()
1606
+ c_ = int(c2 * e) # hidden channels
1607
+ self.cv1 = Conv(c1, c_, 1, 1)
1608
+ self.cv2 = Conv(c1, c_, 1, 1)
1609
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
1610
+ num_heads = c_ // 32
1611
+ self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1612
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1613
+
1614
+ def forward(self, x):
1615
+ y1 = self.m(self.cv1(x))
1616
+ y2 = self.cv2(x)
1617
+ return self.cv3(torch.cat((y1, y2), dim=1))
1618
+
1619
+
1620
+ class STCSPB(nn.Module):
1621
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1622
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1623
+ super(STCSPB, self).__init__()
1624
+ c_ = int(c2) # hidden channels
1625
+ self.cv1 = Conv(c1, c_, 1, 1)
1626
+ self.cv2 = Conv(c_, c_, 1, 1)
1627
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
1628
+ num_heads = c_ // 32
1629
+ self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1630
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1631
+
1632
+ def forward(self, x):
1633
+ x1 = self.cv1(x)
1634
+ y1 = self.m(x1)
1635
+ y2 = self.cv2(x1)
1636
+ return self.cv3(torch.cat((y1, y2), dim=1))
1637
+
1638
+
1639
+ class STCSPC(nn.Module):
1640
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1641
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1642
+ super(STCSPC, self).__init__()
1643
+ c_ = int(c2 * e) # hidden channels
1644
+ self.cv1 = Conv(c1, c_, 1, 1)
1645
+ self.cv2 = Conv(c1, c_, 1, 1)
1646
+ self.cv3 = Conv(c_, c_, 1, 1)
1647
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
1648
+ num_heads = c_ // 32
1649
+ self.m = SwinTransformerBlock(c_, c_, num_heads, n)
1650
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1651
+
1652
+ def forward(self, x):
1653
+ y1 = self.cv3(self.m(self.cv1(x)))
1654
+ y2 = self.cv2(x)
1655
+ return self.cv4(torch.cat((y1, y2), dim=1))
1656
+
1657
+ ##### end of swin transformer #####
1658
+
1659
+
1660
+ ##### swin transformer v2 #####
1661
+
1662
+ class WindowAttention_v2(nn.Module):
1663
+
1664
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
1665
+ pretrained_window_size=[0, 0]):
1666
+
1667
+ super().__init__()
1668
+ self.dim = dim
1669
+ self.window_size = window_size # Wh, Ww
1670
+ self.pretrained_window_size = pretrained_window_size
1671
+ self.num_heads = num_heads
1672
+
1673
+ self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
1674
+
1675
+ # mlp to generate continuous relative position bias
1676
+ self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
1677
+ nn.ReLU(inplace=True),
1678
+ nn.Linear(512, num_heads, bias=False))
1679
+
1680
+ # get relative_coords_table
1681
+ relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
1682
+ relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
1683
+ relative_coords_table = torch.stack(
1684
+ torch.meshgrid([relative_coords_h,
1685
+ relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
1686
+ if pretrained_window_size[0] > 0:
1687
+ relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
1688
+ relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
1689
+ else:
1690
+ relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
1691
+ relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
1692
+ relative_coords_table *= 8 # normalize to -8, 8
1693
+ relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
1694
+ torch.abs(relative_coords_table) + 1.0) / np.log2(8)
1695
+
1696
+ self.register_buffer("relative_coords_table", relative_coords_table)
1697
+
1698
+ # get pair-wise relative position index for each token inside the window
1699
+ coords_h = torch.arange(self.window_size[0])
1700
+ coords_w = torch.arange(self.window_size[1])
1701
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
1702
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
1703
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
1704
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
1705
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
1706
+ relative_coords[:, :, 1] += self.window_size[1] - 1
1707
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
1708
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
1709
+ self.register_buffer("relative_position_index", relative_position_index)
1710
+
1711
+ self.qkv = nn.Linear(dim, dim * 3, bias=False)
1712
+ if qkv_bias:
1713
+ self.q_bias = nn.Parameter(torch.zeros(dim))
1714
+ self.v_bias = nn.Parameter(torch.zeros(dim))
1715
+ else:
1716
+ self.q_bias = None
1717
+ self.v_bias = None
1718
+ self.attn_drop = nn.Dropout(attn_drop)
1719
+ self.proj = nn.Linear(dim, dim)
1720
+ self.proj_drop = nn.Dropout(proj_drop)
1721
+ self.softmax = nn.Softmax(dim=-1)
1722
+
1723
+ def forward(self, x, mask=None):
1724
+
1725
+ B_, N, C = x.shape
1726
+ qkv_bias = None
1727
+ if self.q_bias is not None:
1728
+ qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
1729
+ qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
1730
+ qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
1731
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
1732
+
1733
+ # cosine attention
1734
+ attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
1735
+ logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01))).exp()
1736
+ attn = attn * logit_scale
1737
+
1738
+ relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
1739
+ relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
1740
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
1741
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
1742
+ relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
1743
+ attn = attn + relative_position_bias.unsqueeze(0)
1744
+
1745
+ if mask is not None:
1746
+ nW = mask.shape[0]
1747
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
1748
+ attn = attn.view(-1, self.num_heads, N, N)
1749
+ attn = self.softmax(attn)
1750
+ else:
1751
+ attn = self.softmax(attn)
1752
+
1753
+ attn = self.attn_drop(attn)
1754
+
1755
+ try:
1756
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
1757
+ except:
1758
+ x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)
1759
+
1760
+ x = self.proj(x)
1761
+ x = self.proj_drop(x)
1762
+ return x
1763
+
1764
+ def extra_repr(self) -> str:
1765
+ return f'dim={self.dim}, window_size={self.window_size}, ' \
1766
+ f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
1767
+
1768
+ def flops(self, N):
1769
+ # calculate flops for 1 window with token length of N
1770
+ flops = 0
1771
+ # qkv = self.qkv(x)
1772
+ flops += N * self.dim * 3 * self.dim
1773
+ # attn = (q @ k.transpose(-2, -1))
1774
+ flops += self.num_heads * N * (self.dim // self.num_heads) * N
1775
+ # x = (attn @ v)
1776
+ flops += self.num_heads * N * N * (self.dim // self.num_heads)
1777
+ # x = self.proj(x)
1778
+ flops += N * self.dim * self.dim
1779
+ return flops
1780
+
1781
+ class Mlp_v2(nn.Module):
1782
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
1783
+ super().__init__()
1784
+ out_features = out_features or in_features
1785
+ hidden_features = hidden_features or in_features
1786
+ self.fc1 = nn.Linear(in_features, hidden_features)
1787
+ self.act = act_layer()
1788
+ self.fc2 = nn.Linear(hidden_features, out_features)
1789
+ self.drop = nn.Dropout(drop)
1790
+
1791
+ def forward(self, x):
1792
+ x = self.fc1(x)
1793
+ x = self.act(x)
1794
+ x = self.drop(x)
1795
+ x = self.fc2(x)
1796
+ x = self.drop(x)
1797
+ return x
1798
+
1799
+
1800
+ def window_partition_v2(x, window_size):
1801
+
1802
+ B, H, W, C = x.shape
1803
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
1804
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
1805
+ return windows
1806
+
1807
+
1808
+ def window_reverse_v2(windows, window_size, H, W):
1809
+
1810
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
1811
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
1812
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
1813
+ return x
1814
+
1815
+
1816
+ class SwinTransformerLayer_v2(nn.Module):
1817
+
1818
+ def __init__(self, dim, num_heads, window_size=7, shift_size=0,
1819
+ mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
1820
+ act_layer=nn.SiLU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
1821
+ super().__init__()
1822
+ self.dim = dim
1823
+ #self.input_resolution = input_resolution
1824
+ self.num_heads = num_heads
1825
+ self.window_size = window_size
1826
+ self.shift_size = shift_size
1827
+ self.mlp_ratio = mlp_ratio
1828
+ #if min(self.input_resolution) <= self.window_size:
1829
+ # # if window size is larger than input resolution, we don't partition windows
1830
+ # self.shift_size = 0
1831
+ # self.window_size = min(self.input_resolution)
1832
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
1833
+
1834
+ self.norm1 = norm_layer(dim)
1835
+ self.attn = WindowAttention_v2(
1836
+ dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
1837
+ qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
1838
+ pretrained_window_size=(pretrained_window_size, pretrained_window_size))
1839
+
1840
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
1841
+ self.norm2 = norm_layer(dim)
1842
+ mlp_hidden_dim = int(dim * mlp_ratio)
1843
+ self.mlp = Mlp_v2(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
1844
+
1845
+ def create_mask(self, H, W):
1846
+ # calculate attention mask for SW-MSA
1847
+ img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
1848
+ h_slices = (slice(0, -self.window_size),
1849
+ slice(-self.window_size, -self.shift_size),
1850
+ slice(-self.shift_size, None))
1851
+ w_slices = (slice(0, -self.window_size),
1852
+ slice(-self.window_size, -self.shift_size),
1853
+ slice(-self.shift_size, None))
1854
+ cnt = 0
1855
+ for h in h_slices:
1856
+ for w in w_slices:
1857
+ img_mask[:, h, w, :] = cnt
1858
+ cnt += 1
1859
+
1860
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
1861
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
1862
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
1863
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
1864
+
1865
+ return attn_mask
1866
+
1867
+ def forward(self, x):
1868
+ # reshape x[b c h w] to x[b l c]
1869
+ _, _, H_, W_ = x.shape
1870
+
1871
+ Padding = False
1872
+ if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
1873
+ Padding = True
1874
+ # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
1875
+ pad_r = (self.window_size - W_ % self.window_size) % self.window_size
1876
+ pad_b = (self.window_size - H_ % self.window_size) % self.window_size
1877
+ x = F.pad(x, (0, pad_r, 0, pad_b))
1878
+
1879
+ # print('2', x.shape)
1880
+ B, C, H, W = x.shape
1881
+ L = H * W
1882
+ x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C) # b, L, c
1883
+
1884
+ # create mask from init to forward
1885
+ if self.shift_size > 0:
1886
+ attn_mask = self.create_mask(H, W).to(x.device)
1887
+ else:
1888
+ attn_mask = None
1889
+
1890
+ shortcut = x
1891
+ x = x.view(B, H, W, C)
1892
+
1893
+ # cyclic shift
1894
+ if self.shift_size > 0:
1895
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
1896
+ else:
1897
+ shifted_x = x
1898
+
1899
+ # partition windows
1900
+ x_windows = window_partition_v2(shifted_x, self.window_size) # nW*B, window_size, window_size, C
1901
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
1902
+
1903
+ # W-MSA/SW-MSA
1904
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
1905
+
1906
+ # merge windows
1907
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
1908
+ shifted_x = window_reverse_v2(attn_windows, self.window_size, H, W) # B H' W' C
1909
+
1910
+ # reverse cyclic shift
1911
+ if self.shift_size > 0:
1912
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
1913
+ else:
1914
+ x = shifted_x
1915
+ x = x.view(B, H * W, C)
1916
+ x = shortcut + self.drop_path(self.norm1(x))
1917
+
1918
+ # FFN
1919
+ x = x + self.drop_path(self.norm2(self.mlp(x)))
1920
+ x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W) # b c h w
1921
+
1922
+ if Padding:
1923
+ x = x[:, :, :H_, :W_] # reverse padding
1924
+
1925
+ return x
1926
+
1927
+ def extra_repr(self) -> str:
1928
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
1929
+ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
1930
+
1931
+ def flops(self):
1932
+ flops = 0
1933
+ H, W = self.input_resolution
1934
+ # norm1
1935
+ flops += self.dim * H * W
1936
+ # W-MSA/SW-MSA
1937
+ nW = H * W / self.window_size / self.window_size
1938
+ flops += nW * self.attn.flops(self.window_size * self.window_size)
1939
+ # mlp
1940
+ flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
1941
+ # norm2
1942
+ flops += self.dim * H * W
1943
+ return flops
1944
+
1945
+
1946
+ class SwinTransformer2Block(nn.Module):
1947
+ def __init__(self, c1, c2, num_heads, num_layers, window_size=7):
1948
+ super().__init__()
1949
+ self.conv = None
1950
+ if c1 != c2:
1951
+ self.conv = Conv(c1, c2)
1952
+
1953
+ # remove input_resolution
1954
+ self.blocks = nn.Sequential(*[SwinTransformerLayer_v2(dim=c2, num_heads=num_heads, window_size=window_size,
1955
+ shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])
1956
+
1957
+ def forward(self, x):
1958
+ if self.conv is not None:
1959
+ x = self.conv(x)
1960
+ x = self.blocks(x)
1961
+ return x
1962
+
1963
+
1964
+ class ST2CSPA(nn.Module):
1965
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1966
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1967
+ super(ST2CSPA, self).__init__()
1968
+ c_ = int(c2 * e) # hidden channels
1969
+ self.cv1 = Conv(c1, c_, 1, 1)
1970
+ self.cv2 = Conv(c1, c_, 1, 1)
1971
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
1972
+ num_heads = c_ // 32
1973
+ self.m = SwinTransformer2Block(c_, c_, num_heads, n)
1974
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1975
+
1976
+ def forward(self, x):
1977
+ y1 = self.m(self.cv1(x))
1978
+ y2 = self.cv2(x)
1979
+ return self.cv3(torch.cat((y1, y2), dim=1))
1980
+
1981
+
1982
+ class ST2CSPB(nn.Module):
1983
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
1984
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
1985
+ super(ST2CSPB, self).__init__()
1986
+ c_ = int(c2) # hidden channels
1987
+ self.cv1 = Conv(c1, c_, 1, 1)
1988
+ self.cv2 = Conv(c_, c_, 1, 1)
1989
+ self.cv3 = Conv(2 * c_, c2, 1, 1)
1990
+ num_heads = c_ // 32
1991
+ self.m = SwinTransformer2Block(c_, c_, num_heads, n)
1992
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
1993
+
1994
+ def forward(self, x):
1995
+ x1 = self.cv1(x)
1996
+ y1 = self.m(x1)
1997
+ y2 = self.cv2(x1)
1998
+ return self.cv3(torch.cat((y1, y2), dim=1))
1999
+
2000
+
2001
+ class ST2CSPC(nn.Module):
2002
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
2003
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
2004
+ super(ST2CSPC, self).__init__()
2005
+ c_ = int(c2 * e) # hidden channels
2006
+ self.cv1 = Conv(c1, c_, 1, 1)
2007
+ self.cv2 = Conv(c1, c_, 1, 1)
2008
+ self.cv3 = Conv(c_, c_, 1, 1)
2009
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
2010
+ num_heads = c_ // 32
2011
+ self.m = SwinTransformer2Block(c_, c_, num_heads, n)
2012
+ #self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
2013
+
2014
+ def forward(self, x):
2015
+ y1 = self.cv3(self.m(self.cv1(x)))
2016
+ y2 = self.cv2(x)
2017
+ return self.cv4(torch.cat((y1, y2), dim=1))
2018
+
2019
+ ##### end of swin transformer v2 #####
detection/models/experimental.py ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+ from models.common import Conv, DWConv
7
+ from utils.google_utils import attempt_download
8
+
9
+
10
+ class CrossConv(nn.Module):
11
+ # Cross Convolution Downsample
12
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
13
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
14
+ super(CrossConv, self).__init__()
15
+ c_ = int(c2 * e) # hidden channels
16
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
17
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
18
+ self.add = shortcut and c1 == c2
19
+
20
+ def forward(self, x):
21
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
22
+
23
+
24
+ class Sum(nn.Module):
25
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
26
+ def __init__(self, n, weight=False): # n: number of inputs
27
+ super(Sum, self).__init__()
28
+ self.weight = weight # apply weights boolean
29
+ self.iter = range(n - 1) # iter object
30
+ if weight:
31
+ self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
32
+
33
+ def forward(self, x):
34
+ y = x[0] # no weight
35
+ if self.weight:
36
+ w = torch.sigmoid(self.w) * 2
37
+ for i in self.iter:
38
+ y = y + x[i + 1] * w[i]
39
+ else:
40
+ for i in self.iter:
41
+ y = y + x[i + 1]
42
+ return y
43
+
44
+
45
+ class MixConv2d(nn.Module):
46
+ # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
47
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
48
+ super(MixConv2d, self).__init__()
49
+ groups = len(k)
50
+ if equal_ch: # equal c_ per group
51
+ i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
52
+ c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
53
+ else: # equal weight.numel() per group
54
+ b = [c2] + [0] * groups
55
+ a = np.eye(groups + 1, groups, k=-1)
56
+ a -= np.roll(a, 1, axis=1)
57
+ a *= np.array(k) ** 2
58
+ a[0] = 1
59
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
60
+
61
+ self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
62
+ self.bn = nn.BatchNorm2d(c2)
63
+ self.act = nn.LeakyReLU(0.1, inplace=True)
64
+
65
+ def forward(self, x):
66
+ return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
67
+
68
+
69
+ class Ensemble(nn.ModuleList):
70
+ # Ensemble of models
71
+ def __init__(self):
72
+ super(Ensemble, self).__init__()
73
+
74
+ def forward(self, x, augment=False):
75
+ y = []
76
+ for module in self:
77
+ y.append(module(x, augment)[0])
78
+ # y = torch.stack(y).max(0)[0] # max ensemble
79
+ # y = torch.stack(y).mean(0) # mean ensemble
80
+ y = torch.cat(y, 1) # nms ensemble
81
+ return y, None # inference, train output
82
+
83
+
84
+
85
+
86
+
87
+ class ORT_NMS(torch.autograd.Function):
88
+ '''ONNX-Runtime NMS operation'''
89
+ @staticmethod
90
+ def forward(ctx,
91
+ boxes,
92
+ scores,
93
+ max_output_boxes_per_class=torch.tensor([100]),
94
+ iou_threshold=torch.tensor([0.45]),
95
+ score_threshold=torch.tensor([0.25])):
96
+ device = boxes.device
97
+ batch = scores.shape[0]
98
+ num_det = random.randint(0, 100)
99
+ batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
100
+ idxs = torch.arange(100, 100 + num_det).to(device)
101
+ zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
102
+ selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
103
+ selected_indices = selected_indices.to(torch.int64)
104
+ return selected_indices
105
+
106
+ @staticmethod
107
+ def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
108
+ return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)
109
+
110
+
111
+ class TRT_NMS(torch.autograd.Function):
112
+ '''TensorRT NMS operation'''
113
+ @staticmethod
114
+ def forward(
115
+ ctx,
116
+ boxes,
117
+ scores,
118
+ background_class=-1,
119
+ box_coding=1,
120
+ iou_threshold=0.45,
121
+ max_output_boxes=100,
122
+ plugin_version="1",
123
+ score_activation=0,
124
+ score_threshold=0.25,
125
+ ):
126
+ batch_size, num_boxes, num_classes = scores.shape
127
+ num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
128
+ det_boxes = torch.randn(batch_size, max_output_boxes, 4)
129
+ det_scores = torch.randn(batch_size, max_output_boxes)
130
+ det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
131
+ return num_det, det_boxes, det_scores, det_classes
132
+
133
+ @staticmethod
134
+ def symbolic(g,
135
+ boxes,
136
+ scores,
137
+ background_class=-1,
138
+ box_coding=1,
139
+ iou_threshold=0.45,
140
+ max_output_boxes=100,
141
+ plugin_version="1",
142
+ score_activation=0,
143
+ score_threshold=0.25):
144
+ out = g.op("TRT::EfficientNMS_TRT",
145
+ boxes,
146
+ scores,
147
+ background_class_i=background_class,
148
+ box_coding_i=box_coding,
149
+ iou_threshold_f=iou_threshold,
150
+ max_output_boxes_i=max_output_boxes,
151
+ plugin_version_s=plugin_version,
152
+ score_activation_i=score_activation,
153
+ score_threshold_f=score_threshold,
154
+ outputs=4)
155
+ nums, boxes, scores, classes = out
156
+ return nums, boxes, scores, classes
157
+
158
+
159
+ class ONNX_ORT(nn.Module):
160
+ '''onnx module with ONNX-Runtime NMS operation.'''
161
+ def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None):
162
+ super().__init__()
163
+ self.device = device if device else torch.device("cpu")
164
+ self.max_obj = torch.tensor([max_obj]).to(device)
165
+ self.iou_threshold = torch.tensor([iou_thres]).to(device)
166
+ self.score_threshold = torch.tensor([score_thres]).to(device)
167
+ self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic
168
+ self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
169
+ dtype=torch.float32,
170
+ device=self.device)
171
+
172
+ def forward(self, x):
173
+ boxes = x[:, :, :4]
174
+ conf = x[:, :, 4:5]
175
+ scores = x[:, :, 5:]
176
+ scores *= conf
177
+ boxes @= self.convert_matrix
178
+ max_score, category_id = scores.max(2, keepdim=True)
179
+ dis = category_id.float() * self.max_wh
180
+ nmsbox = boxes + dis
181
+ max_score_tp = max_score.transpose(1, 2).contiguous()
182
+ selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold)
183
+ X, Y = selected_indices[:, 0], selected_indices[:, 2]
184
+ selected_boxes = boxes[X, Y, :]
185
+ selected_categories = category_id[X, Y, :].float()
186
+ selected_scores = max_score[X, Y, :]
187
+ X = X.unsqueeze(1).float()
188
+ return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1)
189
+
190
+ class ONNX_TRT(nn.Module):
191
+ '''onnx module with TensorRT NMS operation.'''
192
+ def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None):
193
+ super().__init__()
194
+ assert max_wh is None
195
+ self.device = device if device else torch.device('cpu')
196
+ self.background_class = -1,
197
+ self.box_coding = 1,
198
+ self.iou_threshold = iou_thres
199
+ self.max_obj = max_obj
200
+ self.plugin_version = '1'
201
+ self.score_activation = 0
202
+ self.score_threshold = score_thres
203
+
204
+ def forward(self, x):
205
+ boxes = x[:, :, :4]
206
+ conf = x[:, :, 4:5]
207
+ scores = x[:, :, 5:]
208
+ scores *= conf
209
+ num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(boxes, scores, self.background_class, self.box_coding,
210
+ self.iou_threshold, self.max_obj,
211
+ self.plugin_version, self.score_activation,
212
+ self.score_threshold)
213
+ return num_det, det_boxes, det_scores, det_classes
214
+
215
+
216
+ class End2End(nn.Module):
217
+ '''export onnx or tensorrt model with NMS operation.'''
218
+ def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None):
219
+ super().__init__()
220
+ device = device if device else torch.device('cpu')
221
+ assert isinstance(max_wh,(int)) or max_wh is None
222
+ self.model = model.to(device)
223
+ self.model.model[-1].end2end = True
224
+ self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT
225
+ self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device)
226
+ self.end2end.eval()
227
+
228
+ def forward(self, x):
229
+ x = self.model(x)
230
+ x = self.end2end(x)
231
+ return x
232
+
233
+
234
+
235
+
236
+
237
+ def attempt_load(weights, map_location=None):
238
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
239
+ model = Ensemble()
240
+ for w in weights if isinstance(weights, list) else [weights]:
241
+ attempt_download(w)
242
+ ckpt = torch.load(w, map_location=map_location) # load
243
+ model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
244
+
245
+ # Compatibility updates
246
+ for m in model.modules():
247
+ if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
248
+ m.inplace = True # pytorch 1.7.0 compatibility
249
+ elif type(m) is nn.Upsample:
250
+ m.recompute_scale_factor = None # torch 1.11.0 compatibility
251
+ elif type(m) is Conv:
252
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
253
+
254
+ if len(model) == 1:
255
+ return model[-1] # return model
256
+ else:
257
+ print('Ensemble created with %s\n' % weights)
258
+ for k in ['names', 'stride']:
259
+ setattr(model, k, getattr(model[-1], k))
260
+ return model # return ensemble
261
+
262
+
detection/models/yolo.py ADDED
@@ -0,0 +1,843 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import logging
3
+ import sys
4
+ from copy import deepcopy
5
+
6
+ sys.path.append('./') # to run '$ python *.py' files in subdirectories
7
+ logger = logging.getLogger(__name__)
8
+ import torch
9
+ from models.common import *
10
+ from models.experimental import *
11
+ from utils.autoanchor import check_anchor_order
12
+ from utils.general import make_divisible, check_file, set_logging
13
+ from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
14
+ select_device, copy_attr
15
+ from utils.loss import SigmoidBin
16
+
17
+ try:
18
+ import thop # for FLOPS computation
19
+ except ImportError:
20
+ thop = None
21
+
22
+
23
+ class Detect(nn.Module):
24
+ stride = None # strides computed during build
25
+ export = False # onnx export
26
+ end2end = False
27
+ include_nms = False
28
+ concat = False
29
+
30
+ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
31
+ super(Detect, self).__init__()
32
+ self.nc = nc # number of classes
33
+ self.no = nc + 5 # number of outputs per anchor
34
+ self.nl = len(anchors) # number of detection layers
35
+ self.na = len(anchors[0]) // 2 # number of anchors
36
+ self.grid = [torch.zeros(1)] * self.nl # init grid
37
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
38
+ self.register_buffer('anchors', a) # shape(nl,na,2)
39
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
40
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
41
+
42
+ def forward(self, x):
43
+ # x = x.copy() # for profiling
44
+ z = [] # inference output
45
+ self.training |= self.export
46
+ for i in range(self.nl):
47
+ x[i] = self.m[i](x[i]) # conv
48
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
49
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
50
+
51
+ if not self.training: # inference
52
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
53
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
54
+ y = x[i].sigmoid()
55
+ if not torch.onnx.is_in_onnx_export():
56
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
57
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
58
+ else:
59
+ xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
60
+ xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) # new xy
61
+ wh = wh ** 2 * (4 * self.anchor_grid[i].data) # new wh
62
+ y = torch.cat((xy, wh, conf), 4)
63
+ z.append(y.view(bs, -1, self.no))
64
+
65
+ if self.training:
66
+ out = x
67
+ elif self.end2end:
68
+ out = torch.cat(z, 1)
69
+ elif self.include_nms:
70
+ z = self.convert(z)
71
+ out = (z, )
72
+ elif self.concat:
73
+ out = torch.cat(z, 1)
74
+ else:
75
+ out = (torch.cat(z, 1), x)
76
+
77
+ return out
78
+
79
+ @staticmethod
80
+ def _make_grid(nx=20, ny=20):
81
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
82
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
83
+
84
+ def convert(self, z):
85
+ z = torch.cat(z, 1)
86
+ box = z[:, :, :4]
87
+ conf = z[:, :, 4:5]
88
+ score = z[:, :, 5:]
89
+ score *= conf
90
+ convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
91
+ dtype=torch.float32,
92
+ device=z.device)
93
+ box @= convert_matrix
94
+ return (box, score)
95
+
96
+
97
+ class IDetect(nn.Module):
98
+ stride = None # strides computed during build
99
+ export = False # onnx export
100
+ end2end = False
101
+ include_nms = False
102
+ concat = False
103
+
104
+ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
105
+ super(IDetect, self).__init__()
106
+ self.nc = nc # number of classes
107
+ self.no = nc + 5 # number of outputs per anchor
108
+ self.nl = len(anchors) # number of detection layers
109
+ self.na = len(anchors[0]) // 2 # number of anchors
110
+ self.grid = [torch.zeros(1)] * self.nl # init grid
111
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
112
+ self.register_buffer('anchors', a) # shape(nl,na,2)
113
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
114
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
115
+
116
+ self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
117
+ self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
118
+
119
+ def forward(self, x):
120
+ # x = x.copy() # for profiling
121
+ z = [] # inference output
122
+ self.training |= self.export
123
+ for i in range(self.nl):
124
+ x[i] = self.m[i](self.ia[i](x[i])) # conv
125
+ x[i] = self.im[i](x[i])
126
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
127
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
128
+
129
+ if not self.training: # inference
130
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
131
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
132
+
133
+ y = x[i].sigmoid()
134
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
135
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
136
+ z.append(y.view(bs, -1, self.no))
137
+
138
+ return x if self.training else (torch.cat(z, 1), x)
139
+
140
+ def fuseforward(self, x):
141
+ # x = x.copy() # for profiling
142
+ z = [] # inference output
143
+ self.training |= self.export
144
+ for i in range(self.nl):
145
+ x[i] = self.m[i](x[i]) # conv
146
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
147
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
148
+
149
+ if not self.training: # inference
150
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
151
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
152
+
153
+ y = x[i].sigmoid()
154
+ if not torch.onnx.is_in_onnx_export():
155
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
156
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
157
+ else:
158
+ xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
159
+ xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) # new xy
160
+ wh = wh ** 2 * (4 * self.anchor_grid[i].data) # new wh
161
+ y = torch.cat((xy, wh, conf), 4)
162
+ z.append(y.view(bs, -1, self.no))
163
+
164
+ if self.training:
165
+ out = x
166
+ elif self.end2end:
167
+ out = torch.cat(z, 1)
168
+ elif self.include_nms:
169
+ z = self.convert(z)
170
+ out = (z, )
171
+ elif self.concat:
172
+ out = torch.cat(z, 1)
173
+ else:
174
+ out = (torch.cat(z, 1), x)
175
+
176
+ return out
177
+
178
+ def fuse(self):
179
+ print("IDetect.fuse")
180
+ # fuse ImplicitA and Convolution
181
+ for i in range(len(self.m)):
182
+ c1,c2,_,_ = self.m[i].weight.shape
183
+ c1_,c2_, _,_ = self.ia[i].implicit.shape
184
+ self.m[i].bias += torch.matmul(self.m[i].weight.reshape(c1,c2),self.ia[i].implicit.reshape(c2_,c1_)).squeeze(1)
185
+
186
+ # fuse ImplicitM and Convolution
187
+ for i in range(len(self.m)):
188
+ c1,c2, _,_ = self.im[i].implicit.shape
189
+ self.m[i].bias *= self.im[i].implicit.reshape(c2)
190
+ self.m[i].weight *= self.im[i].implicit.transpose(0,1)
191
+
192
+ @staticmethod
193
+ def _make_grid(nx=20, ny=20):
194
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
195
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
196
+
197
+ def convert(self, z):
198
+ z = torch.cat(z, 1)
199
+ box = z[:, :, :4]
200
+ conf = z[:, :, 4:5]
201
+ score = z[:, :, 5:]
202
+ score *= conf
203
+ convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
204
+ dtype=torch.float32,
205
+ device=z.device)
206
+ box @= convert_matrix
207
+ return (box, score)
208
+
209
+
210
+ class IKeypoint(nn.Module):
211
+ stride = None # strides computed during build
212
+ export = False # onnx export
213
+
214
+ def __init__(self, nc=80, anchors=(), nkpt=17, ch=(), inplace=True, dw_conv_kpt=False): # detection layer
215
+ super(IKeypoint, self).__init__()
216
+ self.nc = nc # number of classes
217
+ self.nkpt = nkpt
218
+ self.dw_conv_kpt = dw_conv_kpt
219
+ self.no_det=(nc + 5) # number of outputs per anchor for box and class
220
+ self.no_kpt = 3*self.nkpt ## number of outputs per anchor for keypoints
221
+ self.no = self.no_det+self.no_kpt
222
+ self.nl = len(anchors) # number of detection layers
223
+ self.na = len(anchors[0]) // 2 # number of anchors
224
+ self.grid = [torch.zeros(1)] * self.nl # init grid
225
+ self.flip_test = False
226
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
227
+ self.register_buffer('anchors', a) # shape(nl,na,2)
228
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
229
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no_det * self.na, 1) for x in ch) # output conv
230
+
231
+ self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
232
+ self.im = nn.ModuleList(ImplicitM(self.no_det * self.na) for _ in ch)
233
+
234
+ if self.nkpt is not None:
235
+ if self.dw_conv_kpt: #keypoint head is slightly more complex
236
+ self.m_kpt = nn.ModuleList(
237
+ nn.Sequential(DWConv(x, x, k=3), Conv(x,x),
238
+ DWConv(x, x, k=3), Conv(x, x),
239
+ DWConv(x, x, k=3), Conv(x,x),
240
+ DWConv(x, x, k=3), Conv(x, x),
241
+ DWConv(x, x, k=3), Conv(x, x),
242
+ DWConv(x, x, k=3), nn.Conv2d(x, self.no_kpt * self.na, 1)) for x in ch)
243
+ else: #keypoint head is a single convolution
244
+ self.m_kpt = nn.ModuleList(nn.Conv2d(x, self.no_kpt * self.na, 1) for x in ch)
245
+
246
+ self.inplace = inplace # use in-place ops (e.g. slice assignment)
247
+
248
+ def forward(self, x):
249
+ # x = x.copy() # for profiling
250
+ z = [] # inference output
251
+ self.training |= self.export
252
+ for i in range(self.nl):
253
+ if self.nkpt is None or self.nkpt==0:
254
+ x[i] = self.im[i](self.m[i](self.ia[i](x[i]))) # conv
255
+ else :
256
+ x[i] = torch.cat((self.im[i](self.m[i](self.ia[i](x[i]))), self.m_kpt[i](x[i])), axis=1)
257
+
258
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
259
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
260
+ x_det = x[i][..., :6]
261
+ x_kpt = x[i][..., 6:]
262
+
263
+ if not self.training: # inference
264
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
265
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
266
+ kpt_grid_x = self.grid[i][..., 0:1]
267
+ kpt_grid_y = self.grid[i][..., 1:2]
268
+
269
+ if self.nkpt == 0:
270
+ y = x[i].sigmoid()
271
+ else:
272
+ y = x_det.sigmoid()
273
+
274
+ if self.inplace:
275
+ xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
276
+ wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].view(1, self.na, 1, 1, 2) # wh
277
+ if self.nkpt != 0:
278
+ x_kpt[..., 0::3] = (x_kpt[..., ::3] * 2. - 0.5 + kpt_grid_x.repeat(1,1,1,1,17)) * self.stride[i] # xy
279
+ x_kpt[..., 1::3] = (x_kpt[..., 1::3] * 2. - 0.5 + kpt_grid_y.repeat(1,1,1,1,17)) * self.stride[i] # xy
280
+ #x_kpt[..., 0::3] = (x_kpt[..., ::3] + kpt_grid_x.repeat(1,1,1,1,17)) * self.stride[i] # xy
281
+ #x_kpt[..., 1::3] = (x_kpt[..., 1::3] + kpt_grid_y.repeat(1,1,1,1,17)) * self.stride[i] # xy
282
+ #print('=============')
283
+ #print(self.anchor_grid[i].shape)
284
+ #print(self.anchor_grid[i][...,0].unsqueeze(4).shape)
285
+ #print(x_kpt[..., 0::3].shape)
286
+ #x_kpt[..., 0::3] = ((x_kpt[..., 0::3].tanh() * 2.) ** 3 * self.anchor_grid[i][...,0].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_x.repeat(1,1,1,1,17) * self.stride[i] # xy
287
+ #x_kpt[..., 1::3] = ((x_kpt[..., 1::3].tanh() * 2.) ** 3 * self.anchor_grid[i][...,1].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_y.repeat(1,1,1,1,17) * self.stride[i] # xy
288
+ #x_kpt[..., 0::3] = (((x_kpt[..., 0::3].sigmoid() * 4.) ** 2 - 8.) * self.anchor_grid[i][...,0].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_x.repeat(1,1,1,1,17) * self.stride[i] # xy
289
+ #x_kpt[..., 1::3] = (((x_kpt[..., 1::3].sigmoid() * 4.) ** 2 - 8.) * self.anchor_grid[i][...,1].unsqueeze(4).repeat(1,1,1,1,self.nkpt)) + kpt_grid_y.repeat(1,1,1,1,17) * self.stride[i] # xy
290
+ x_kpt[..., 2::3] = x_kpt[..., 2::3].sigmoid()
291
+
292
+ y = torch.cat((xy, wh, y[..., 4:], x_kpt), dim = -1)
293
+
294
+ else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
295
+ xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
296
+ wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
297
+ if self.nkpt != 0:
298
+ y[..., 6:] = (y[..., 6:] * 2. - 0.5 + self.grid[i].repeat((1,1,1,1,self.nkpt))) * self.stride[i] # xy
299
+ y = torch.cat((xy, wh, y[..., 4:]), -1)
300
+
301
+ z.append(y.view(bs, -1, self.no))
302
+
303
+ return x if self.training else (torch.cat(z, 1), x)
304
+
305
+ @staticmethod
306
+ def _make_grid(nx=20, ny=20):
307
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
308
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
309
+
310
+
311
+ class IAuxDetect(nn.Module):
312
+ stride = None # strides computed during build
313
+ export = False # onnx export
314
+ end2end = False
315
+ include_nms = False
316
+ concat = False
317
+
318
+ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
319
+ super(IAuxDetect, self).__init__()
320
+ self.nc = nc # number of classes
321
+ self.no = nc + 5 # number of outputs per anchor
322
+ self.nl = len(anchors) # number of detection layers
323
+ self.na = len(anchors[0]) // 2 # number of anchors
324
+ self.grid = [torch.zeros(1)] * self.nl # init grid
325
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
326
+ self.register_buffer('anchors', a) # shape(nl,na,2)
327
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
328
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[:self.nl]) # output conv
329
+ self.m2 = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch[self.nl:]) # output conv
330
+
331
+ self.ia = nn.ModuleList(ImplicitA(x) for x in ch[:self.nl])
332
+ self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch[:self.nl])
333
+
334
+ def forward(self, x):
335
+ # x = x.copy() # for profiling
336
+ z = [] # inference output
337
+ self.training |= self.export
338
+ for i in range(self.nl):
339
+ x[i] = self.m[i](self.ia[i](x[i])) # conv
340
+ x[i] = self.im[i](x[i])
341
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
342
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
343
+
344
+ x[i+self.nl] = self.m2[i](x[i+self.nl])
345
+ x[i+self.nl] = x[i+self.nl].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
346
+
347
+ if not self.training: # inference
348
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
349
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
350
+
351
+ y = x[i].sigmoid()
352
+ if not torch.onnx.is_in_onnx_export():
353
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
354
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
355
+ else:
356
+ xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
357
+ xy = xy * (2. * self.stride[i]) + (self.stride[i] * (self.grid[i] - 0.5)) # new xy
358
+ wh = wh ** 2 * (4 * self.anchor_grid[i].data) # new wh
359
+ y = torch.cat((xy, wh, conf), 4)
360
+ z.append(y.view(bs, -1, self.no))
361
+
362
+ return x if self.training else (torch.cat(z, 1), x[:self.nl])
363
+
364
+ def fuseforward(self, x):
365
+ # x = x.copy() # for profiling
366
+ z = [] # inference output
367
+ self.training |= self.export
368
+ for i in range(self.nl):
369
+ x[i] = self.m[i](x[i]) # conv
370
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
371
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
372
+
373
+ if not self.training: # inference
374
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
375
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
376
+
377
+ y = x[i].sigmoid()
378
+ if not torch.onnx.is_in_onnx_export():
379
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
380
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
381
+ else:
382
+ xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
383
+ wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i].data # wh
384
+ y = torch.cat((xy, wh, y[..., 4:]), -1)
385
+ z.append(y.view(bs, -1, self.no))
386
+
387
+ if self.training:
388
+ out = x
389
+ elif self.end2end:
390
+ out = torch.cat(z, 1)
391
+ elif self.include_nms:
392
+ z = self.convert(z)
393
+ out = (z, )
394
+ elif self.concat:
395
+ out = torch.cat(z, 1)
396
+ else:
397
+ out = (torch.cat(z, 1), x)
398
+
399
+ return out
400
+
401
+ def fuse(self):
402
+ print("IAuxDetect.fuse")
403
+ # fuse ImplicitA and Convolution
404
+ for i in range(len(self.m)):
405
+ c1,c2,_,_ = self.m[i].weight.shape
406
+ c1_,c2_, _,_ = self.ia[i].implicit.shape
407
+ self.m[i].bias += torch.matmul(self.m[i].weight.reshape(c1,c2),self.ia[i].implicit.reshape(c2_,c1_)).squeeze(1)
408
+
409
+ # fuse ImplicitM and Convolution
410
+ for i in range(len(self.m)):
411
+ c1,c2, _,_ = self.im[i].implicit.shape
412
+ self.m[i].bias *= self.im[i].implicit.reshape(c2)
413
+ self.m[i].weight *= self.im[i].implicit.transpose(0,1)
414
+
415
+ @staticmethod
416
+ def _make_grid(nx=20, ny=20):
417
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
418
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
419
+
420
+ def convert(self, z):
421
+ z = torch.cat(z, 1)
422
+ box = z[:, :, :4]
423
+ conf = z[:, :, 4:5]
424
+ score = z[:, :, 5:]
425
+ score *= conf
426
+ convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
427
+ dtype=torch.float32,
428
+ device=z.device)
429
+ box @= convert_matrix
430
+ return (box, score)
431
+
432
+
433
+ class IBin(nn.Module):
434
+ stride = None # strides computed during build
435
+ export = False # onnx export
436
+
437
+ def __init__(self, nc=80, anchors=(), ch=(), bin_count=21): # detection layer
438
+ super(IBin, self).__init__()
439
+ self.nc = nc # number of classes
440
+ self.bin_count = bin_count
441
+
442
+ self.w_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0)
443
+ self.h_bin_sigmoid = SigmoidBin(bin_count=self.bin_count, min=0.0, max=4.0)
444
+ # classes, x,y,obj
445
+ self.no = nc + 3 + \
446
+ self.w_bin_sigmoid.get_length() + self.h_bin_sigmoid.get_length() # w-bce, h-bce
447
+ # + self.x_bin_sigmoid.get_length() + self.y_bin_sigmoid.get_length()
448
+
449
+ self.nl = len(anchors) # number of detection layers
450
+ self.na = len(anchors[0]) // 2 # number of anchors
451
+ self.grid = [torch.zeros(1)] * self.nl # init grid
452
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
453
+ self.register_buffer('anchors', a) # shape(nl,na,2)
454
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
455
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
456
+
457
+ self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
458
+ self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
459
+
460
+ def forward(self, x):
461
+
462
+ #self.x_bin_sigmoid.use_fw_regression = True
463
+ #self.y_bin_sigmoid.use_fw_regression = True
464
+ self.w_bin_sigmoid.use_fw_regression = True
465
+ self.h_bin_sigmoid.use_fw_regression = True
466
+
467
+ # x = x.copy() # for profiling
468
+ z = [] # inference output
469
+ self.training |= self.export
470
+ for i in range(self.nl):
471
+ x[i] = self.m[i](self.ia[i](x[i])) # conv
472
+ x[i] = self.im[i](x[i])
473
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
474
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
475
+
476
+ if not self.training: # inference
477
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
478
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
479
+
480
+ y = x[i].sigmoid()
481
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
482
+ #y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
483
+
484
+
485
+ #px = (self.x_bin_sigmoid.forward(y[..., 0:12]) + self.grid[i][..., 0]) * self.stride[i]
486
+ #py = (self.y_bin_sigmoid.forward(y[..., 12:24]) + self.grid[i][..., 1]) * self.stride[i]
487
+
488
+ pw = self.w_bin_sigmoid.forward(y[..., 2:24]) * self.anchor_grid[i][..., 0]
489
+ ph = self.h_bin_sigmoid.forward(y[..., 24:46]) * self.anchor_grid[i][..., 1]
490
+
491
+ #y[..., 0] = px
492
+ #y[..., 1] = py
493
+ y[..., 2] = pw
494
+ y[..., 3] = ph
495
+
496
+ y = torch.cat((y[..., 0:4], y[..., 46:]), dim=-1)
497
+
498
+ z.append(y.view(bs, -1, y.shape[-1]))
499
+
500
+ return x if self.training else (torch.cat(z, 1), x)
501
+
502
+ @staticmethod
503
+ def _make_grid(nx=20, ny=20):
504
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
505
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
506
+
507
+
508
+ class Model(nn.Module):
509
+ def __init__(self, cfg='yolor-csp-c.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
510
+ super(Model, self).__init__()
511
+ self.traced = False
512
+ if isinstance(cfg, dict):
513
+ self.yaml = cfg # model dict
514
+ else: # is *.yaml
515
+ import yaml # for torch hub
516
+ self.yaml_file = Path(cfg).name
517
+ with open(cfg) as f:
518
+ self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict
519
+
520
+ # Define model
521
+ ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
522
+ if nc and nc != self.yaml['nc']:
523
+ logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
524
+ self.yaml['nc'] = nc # override yaml value
525
+ if anchors:
526
+ logger.info(f'Overriding model.yaml anchors with anchors={anchors}')
527
+ self.yaml['anchors'] = round(anchors) # override yaml value
528
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
529
+ self.names = [str(i) for i in range(self.yaml['nc'])] # default names
530
+ # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
531
+
532
+ # Build strides, anchors
533
+ m = self.model[-1] # Detect()
534
+ if isinstance(m, Detect):
535
+ s = 256 # 2x min stride
536
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
537
+ check_anchor_order(m)
538
+ m.anchors /= m.stride.view(-1, 1, 1)
539
+ self.stride = m.stride
540
+ self._initialize_biases() # only run once
541
+ # print('Strides: %s' % m.stride.tolist())
542
+ if isinstance(m, IDetect):
543
+ s = 256 # 2x min stride
544
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
545
+ check_anchor_order(m)
546
+ m.anchors /= m.stride.view(-1, 1, 1)
547
+ self.stride = m.stride
548
+ self._initialize_biases() # only run once
549
+ # print('Strides: %s' % m.stride.tolist())
550
+ if isinstance(m, IAuxDetect):
551
+ s = 256 # 2x min stride
552
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))[:4]]) # forward
553
+ #print(m.stride)
554
+ check_anchor_order(m)
555
+ m.anchors /= m.stride.view(-1, 1, 1)
556
+ self.stride = m.stride
557
+ self._initialize_aux_biases() # only run once
558
+ # print('Strides: %s' % m.stride.tolist())
559
+ if isinstance(m, IBin):
560
+ s = 256 # 2x min stride
561
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
562
+ check_anchor_order(m)
563
+ m.anchors /= m.stride.view(-1, 1, 1)
564
+ self.stride = m.stride
565
+ self._initialize_biases_bin() # only run once
566
+ # print('Strides: %s' % m.stride.tolist())
567
+ if isinstance(m, IKeypoint):
568
+ s = 256 # 2x min stride
569
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
570
+ check_anchor_order(m)
571
+ m.anchors /= m.stride.view(-1, 1, 1)
572
+ self.stride = m.stride
573
+ self._initialize_biases_kpt() # only run once
574
+ # print('Strides: %s' % m.stride.tolist())
575
+
576
+ # Init weights, biases
577
+ initialize_weights(self)
578
+ self.info()
579
+ logger.info('')
580
+
581
+ def forward(self, x, augment=False, profile=False):
582
+ if augment:
583
+ img_size = x.shape[-2:] # height, width
584
+ s = [1, 0.83, 0.67] # scales
585
+ f = [None, 3, None] # flips (2-ud, 3-lr)
586
+ y = [] # outputs
587
+ for si, fi in zip(s, f):
588
+ xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
589
+ yi = self.forward_once(xi)[0] # forward
590
+ # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
591
+ yi[..., :4] /= si # de-scale
592
+ if fi == 2:
593
+ yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
594
+ elif fi == 3:
595
+ yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
596
+ y.append(yi)
597
+ return torch.cat(y, 1), None # augmented inference, train
598
+ else:
599
+ return self.forward_once(x, profile) # single-scale inference, train
600
+
601
+ def forward_once(self, x, profile=False):
602
+ y, dt = [], [] # outputs
603
+ for m in self.model:
604
+ if m.f != -1: # if not from previous layer
605
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
606
+
607
+ if not hasattr(self, 'traced'):
608
+ self.traced=False
609
+
610
+ if self.traced:
611
+ if isinstance(m, Detect) or isinstance(m, IDetect) or isinstance(m, IAuxDetect) or isinstance(m, IKeypoint):
612
+ break
613
+
614
+ if profile:
615
+ c = isinstance(m, (Detect, IDetect, IAuxDetect, IBin))
616
+ o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
617
+ for _ in range(10):
618
+ m(x.copy() if c else x)
619
+ t = time_synchronized()
620
+ for _ in range(10):
621
+ m(x.copy() if c else x)
622
+ dt.append((time_synchronized() - t) * 100)
623
+ print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
624
+
625
+ x = m(x) # run
626
+
627
+ y.append(x if m.i in self.save else None) # save output
628
+
629
+ if profile:
630
+ print('%.1fms total' % sum(dt))
631
+ return x
632
+
633
+ def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
634
+ # https://arxiv.org/abs/1708.02002 section 3.3
635
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
636
+ m = self.model[-1] # Detect() module
637
+ for mi, s in zip(m.m, m.stride): # from
638
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
639
+ b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
640
+ b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
641
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
642
+
643
+ def _initialize_aux_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
644
+ # https://arxiv.org/abs/1708.02002 section 3.3
645
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
646
+ m = self.model[-1] # Detect() module
647
+ for mi, mi2, s in zip(m.m, m.m2, m.stride): # from
648
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
649
+ b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
650
+ b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
651
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
652
+ b2 = mi2.bias.view(m.na, -1) # conv.bias(255) to (3,85)
653
+ b2.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
654
+ b2.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
655
+ mi2.bias = torch.nn.Parameter(b2.view(-1), requires_grad=True)
656
+
657
+ def _initialize_biases_bin(self, cf=None): # initialize biases into Detect(), cf is class frequency
658
+ # https://arxiv.org/abs/1708.02002 section 3.3
659
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
660
+ m = self.model[-1] # Bin() module
661
+ bc = m.bin_count
662
+ for mi, s in zip(m.m, m.stride): # from
663
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
664
+ old = b[:, (0,1,2,bc+3)].data
665
+ obj_idx = 2*bc+4
666
+ b[:, :obj_idx].data += math.log(0.6 / (bc + 1 - 0.99))
667
+ b[:, obj_idx].data += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
668
+ b[:, (obj_idx+1):].data += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
669
+ b[:, (0,1,2,bc+3)].data = old
670
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
671
+
672
+ def _initialize_biases_kpt(self, cf=None): # initialize biases into Detect(), cf is class frequency
673
+ # https://arxiv.org/abs/1708.02002 section 3.3
674
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
675
+ m = self.model[-1] # Detect() module
676
+ for mi, s in zip(m.m, m.stride): # from
677
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
678
+ b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
679
+ b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
680
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
681
+
682
+ def _print_biases(self):
683
+ m = self.model[-1] # Detect() module
684
+ for mi in m.m: # from
685
+ b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
686
+ print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
687
+
688
+ # def _print_weights(self):
689
+ # for m in self.model.modules():
690
+ # if type(m) is Bottleneck:
691
+ # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
692
+
693
+ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
694
+ print('Fusing layers... ')
695
+ for m in self.model.modules():
696
+ if isinstance(m, RepConv):
697
+ #print(f" fuse_repvgg_block")
698
+ m.fuse_repvgg_block()
699
+ elif isinstance(m, RepConv_OREPA):
700
+ #print(f" switch_to_deploy")
701
+ m.switch_to_deploy()
702
+ elif type(m) is Conv and hasattr(m, 'bn'):
703
+ m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
704
+ delattr(m, 'bn') # remove batchnorm
705
+ m.forward = m.fuseforward # update forward
706
+ elif isinstance(m, (IDetect, IAuxDetect)):
707
+ m.fuse()
708
+ m.forward = m.fuseforward
709
+ self.info()
710
+ return self
711
+
712
+ def nms(self, mode=True): # add or remove NMS module
713
+ present = type(self.model[-1]) is NMS # last layer is NMS
714
+ if mode and not present:
715
+ print('Adding NMS... ')
716
+ m = NMS() # module
717
+ m.f = -1 # from
718
+ m.i = self.model[-1].i + 1 # index
719
+ self.model.add_module(name='%s' % m.i, module=m) # add
720
+ self.eval()
721
+ elif not mode and present:
722
+ print('Removing NMS... ')
723
+ self.model = self.model[:-1] # remove
724
+ return self
725
+
726
+ def autoshape(self): # add autoShape module
727
+ print('Adding autoShape... ')
728
+ m = autoShape(self) # wrap model
729
+ copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
730
+ return m
731
+
732
+ def info(self, verbose=False, img_size=640): # print model information
733
+ model_info(self, verbose, img_size)
734
+
735
+
736
+ def parse_model(d, ch): # model_dict, input_channels(3)
737
+ logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
738
+ anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
739
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
740
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
741
+
742
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
743
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
744
+ m = eval(m) if isinstance(m, str) else m # eval strings
745
+ for j, a in enumerate(args):
746
+ try:
747
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
748
+ except:
749
+ pass
750
+
751
+ n = max(round(n * gd), 1) if n > 1 else n # depth gain
752
+ if m in [nn.Conv2d, Conv, RobustConv, RobustConv2, DWConv, GhostConv, RepConv, RepConv_OREPA, DownC,
753
+ SPP, SPPF, SPPCSPC, GhostSPPCSPC, MixConv2d, Focus, Stem, GhostStem, CrossConv,
754
+ Bottleneck, BottleneckCSPA, BottleneckCSPB, BottleneckCSPC,
755
+ RepBottleneck, RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,
756
+ Res, ResCSPA, ResCSPB, ResCSPC,
757
+ RepRes, RepResCSPA, RepResCSPB, RepResCSPC,
758
+ ResX, ResXCSPA, ResXCSPB, ResXCSPC,
759
+ RepResX, RepResXCSPA, RepResXCSPB, RepResXCSPC,
760
+ Ghost, GhostCSPA, GhostCSPB, GhostCSPC,
761
+ SwinTransformerBlock, STCSPA, STCSPB, STCSPC,
762
+ SwinTransformer2Block, ST2CSPA, ST2CSPB, ST2CSPC]:
763
+ c1, c2 = ch[f], args[0]
764
+ if c2 != no: # if not output
765
+ c2 = make_divisible(c2 * gw, 8)
766
+
767
+ args = [c1, c2, *args[1:]]
768
+ if m in [DownC, SPPCSPC, GhostSPPCSPC,
769
+ BottleneckCSPA, BottleneckCSPB, BottleneckCSPC,
770
+ RepBottleneckCSPA, RepBottleneckCSPB, RepBottleneckCSPC,
771
+ ResCSPA, ResCSPB, ResCSPC,
772
+ RepResCSPA, RepResCSPB, RepResCSPC,
773
+ ResXCSPA, ResXCSPB, ResXCSPC,
774
+ RepResXCSPA, RepResXCSPB, RepResXCSPC,
775
+ GhostCSPA, GhostCSPB, GhostCSPC,
776
+ STCSPA, STCSPB, STCSPC,
777
+ ST2CSPA, ST2CSPB, ST2CSPC]:
778
+ args.insert(2, n) # number of repeats
779
+ n = 1
780
+ elif m is nn.BatchNorm2d:
781
+ args = [ch[f]]
782
+ elif m is Concat:
783
+ c2 = sum([ch[x] for x in f])
784
+ elif m is Chuncat:
785
+ c2 = sum([ch[x] for x in f])
786
+ elif m is Shortcut:
787
+ c2 = ch[f[0]]
788
+ elif m is Foldcut:
789
+ c2 = ch[f] // 2
790
+ elif m in [Detect, IDetect, IAuxDetect, IBin, IKeypoint]:
791
+ args.append([ch[x] for x in f])
792
+ if isinstance(args[1], int): # number of anchors
793
+ args[1] = [list(range(args[1] * 2))] * len(f)
794
+ elif m is ReOrg:
795
+ c2 = ch[f] * 4
796
+ elif m is Contract:
797
+ c2 = ch[f] * args[0] ** 2
798
+ elif m is Expand:
799
+ c2 = ch[f] // args[0] ** 2
800
+ else:
801
+ c2 = ch[f]
802
+
803
+ m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
804
+ t = str(m)[8:-2].replace('__main__.', '') # module type
805
+ np = sum([x.numel() for x in m_.parameters()]) # number params
806
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
807
+ logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
808
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
809
+ layers.append(m_)
810
+ if i == 0:
811
+ ch = []
812
+ ch.append(c2)
813
+ return nn.Sequential(*layers), sorted(save)
814
+
815
+
816
+ if __name__ == '__main__':
817
+ parser = argparse.ArgumentParser()
818
+ parser.add_argument('--cfg', type=str, default='yolor-csp-c.yaml', help='model.yaml')
819
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
820
+ parser.add_argument('--profile', action='store_true', help='profile model speed')
821
+ opt = parser.parse_args()
822
+ opt.cfg = check_file(opt.cfg) # check file
823
+ set_logging()
824
+ device = select_device(opt.device)
825
+
826
+ # Create model
827
+ model = Model(opt.cfg).to(device)
828
+ model.train()
829
+
830
+ if opt.profile:
831
+ img = torch.rand(1, 3, 640, 640).to(device)
832
+ y = model(img, profile=True)
833
+
834
+ # Profile
835
+ # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
836
+ # y = model(img, profile=True)
837
+
838
+ # Tensorboard
839
+ # from torch.utils.tensorboard import SummaryWriter
840
+ # tb_writer = SummaryWriter()
841
+ # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
842
+ # tb_writer.add_graph(model.model, img) # add model to tensorboard
843
+ # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
detection/requirements.txt ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Usage: pip install -r requirements.txt
2
+
3
+ # Base ----------------------------------------
4
+ matplotlib>=3.2.2
5
+ numpy>=1.18.5
6
+ opencv-python>=4.1.1
7
+ Pillow>=7.1.2
8
+ PyYAML>=5.3.1
9
+ requests>=2.23.0
10
+ scipy>=1.4.1
11
+ torch>=1.7.0,!=1.12.0
12
+ torchvision>=0.8.1,!=0.13.0
13
+ tqdm>=4.41.0
14
+ protobuf<4.21.3
15
+
16
+ # Logging -------------------------------------
17
+ tensorboard>=2.4.1
18
+ # wandb
19
+
20
+ # Plotting ------------------------------------
21
+ pandas>=1.1.4
22
+ seaborn>=0.11.0
23
+
24
+ # Export --------------------------------------
25
+ # coremltools>=4.1 # CoreML export
26
+ # onnx>=1.9.0 # ONNX export
27
+ # onnx-simplifier>=0.3.6 # ONNX simplifier
28
+ # scikit-learn==0.19.2 # CoreML quantization
29
+ # tensorflow>=2.4.1 # TFLite export
30
+ # tensorflowjs>=3.9.0 # TF.js export
31
+ # openvino-dev # OpenVINO export
32
+
33
+ # Extras --------------------------------------
34
+ ipython # interactive notebook
35
+ psutil # system utilization
36
+ thop # FLOPs computation
37
+ # albumentations>=1.0.3
38
+ # pycocotools>=2.0 # COCO mAP
39
+ # roboflow
detection/scripts/get_coco.sh ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # COCO 2017 dataset http://cocodataset.org
3
+ # Download command: bash ./scripts/get_coco.sh
4
+
5
+ # Download/unzip labels
6
+ d='./' # unzip directory
7
+ url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
8
+ f='coco2017labels-segments.zip' # or 'coco2017labels.zip', 68 MB
9
+ echo 'Downloading' $url$f ' ...'
10
+ curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
11
+
12
+ # Download/unzip images
13
+ d='./coco/images' # unzip directory
14
+ url=http://images.cocodataset.org/zips/
15
+ f1='train2017.zip' # 19G, 118k images
16
+ f2='val2017.zip' # 1G, 5k images
17
+ f3='test2017.zip' # 7G, 41k images (optional)
18
+ for f in $f1 $f2 $f3; do
19
+ echo 'Downloading' $url$f '...'
20
+ curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
21
+ done
22
+ wait # finish background tasks
detection/test.py ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import os
4
+ from pathlib import Path
5
+ from threading import Thread
6
+
7
+ import numpy as np
8
+ import torch
9
+ import yaml
10
+ from tqdm import tqdm
11
+
12
+ from models.experimental import attempt_load
13
+ from utils.datasets import create_dataloader
14
+ from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
15
+ box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
16
+ from utils.metrics import ap_per_class, ConfusionMatrix
17
+ from utils.plots import plot_images, output_to_target, plot_study_txt
18
+ from utils.torch_utils import select_device, time_synchronized, TracedModel
19
+
20
+
21
+ def test(data,
22
+ weights=None,
23
+ batch_size=32,
24
+ imgsz=640,
25
+ conf_thres=0.001,
26
+ iou_thres=0.6, # for NMS
27
+ save_json=False,
28
+ single_cls=False,
29
+ augment=False,
30
+ verbose=False,
31
+ model=None,
32
+ dataloader=None,
33
+ save_dir=Path(''), # for saving images
34
+ save_txt=False, # for auto-labelling
35
+ save_hybrid=False, # for hybrid auto-labelling
36
+ save_conf=False, # save auto-label confidences
37
+ plots=True,
38
+ wandb_logger=None,
39
+ compute_loss=None,
40
+ half_precision=True,
41
+ trace=False,
42
+ is_coco=False):
43
+ # Initialize/load model and set device
44
+ training = model is not None
45
+ if training: # called by train.py
46
+ device = next(model.parameters()).device # get model device
47
+
48
+ else: # called directly
49
+ set_logging()
50
+ device = select_device(opt.device, batch_size=batch_size)
51
+
52
+ # Directories
53
+ save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
54
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
55
+
56
+ # Load model
57
+ model = attempt_load(weights, map_location=device) # load FP32 model
58
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
59
+ imgsz = check_img_size(imgsz, s=gs) # check img_size
60
+
61
+ if trace:
62
+ model = TracedModel(model, device, opt.img_size)
63
+
64
+ # Half
65
+ half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
66
+ if half:
67
+ model.half()
68
+
69
+ # Configure
70
+ model.eval()
71
+ if isinstance(data, str):
72
+ is_coco = data.endswith('coco.yaml')
73
+ with open(data) as f:
74
+ data = yaml.load(f, Loader=yaml.SafeLoader)
75
+ check_dataset(data) # check
76
+ nc = 1 if single_cls else int(data['nc']) # number of classes
77
+ iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
78
+ niou = iouv.numel()
79
+
80
+ # Logging
81
+ log_imgs = 0
82
+ if wandb_logger and wandb_logger.wandb:
83
+ log_imgs = min(wandb_logger.log_imgs, 100)
84
+ # Dataloader
85
+ if not training:
86
+ if device.type != 'cpu':
87
+ model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
88
+ task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
89
+ dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
90
+ prefix=colorstr(f'{task}: '))[0]
91
+
92
+ seen = 0
93
+ confusion_matrix = ConfusionMatrix(nc=nc)
94
+ names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
95
+ coco91class = coco80_to_coco91_class()
96
+ s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
97
+ p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
98
+ loss = torch.zeros(3, device=device)
99
+ jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
100
+ for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
101
+ img = img.to(device, non_blocking=True)
102
+ img = img.half() if half else img.float() # uint8 to fp16/32
103
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
104
+ targets = targets.to(device)
105
+ nb, _, height, width = img.shape # batch size, channels, height, width
106
+
107
+ with torch.no_grad():
108
+ # Run model
109
+ t = time_synchronized()
110
+ out, train_out = model(img, augment=augment) # inference and training outputs
111
+ t0 += time_synchronized() - t
112
+
113
+ # Compute loss
114
+ if compute_loss:
115
+ loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
116
+
117
+ # Run NMS
118
+ targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
119
+ lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
120
+ t = time_synchronized()
121
+ out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
122
+ t1 += time_synchronized() - t
123
+
124
+ # Statistics per image
125
+ for si, pred in enumerate(out):
126
+ labels = targets[targets[:, 0] == si, 1:]
127
+ nl = len(labels)
128
+ tcls = labels[:, 0].tolist() if nl else [] # target class
129
+ path = Path(paths[si])
130
+ seen += 1
131
+
132
+ if len(pred) == 0:
133
+ if nl:
134
+ stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
135
+ continue
136
+
137
+ # Predictions
138
+ predn = pred.clone()
139
+ scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
140
+
141
+ # Append to text file
142
+ if save_txt:
143
+ gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
144
+ for *xyxy, conf, cls in predn.tolist():
145
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
146
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
147
+ with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
148
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
149
+
150
+ # W&B logging - Media Panel Plots
151
+ if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
152
+ if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
153
+ box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
154
+ "class_id": int(cls),
155
+ "box_caption": "%s %.3f" % (names[cls], conf),
156
+ "scores": {"class_score": conf},
157
+ "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
158
+ boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
159
+ wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
160
+ wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
161
+
162
+ # Append to pycocotools JSON dictionary
163
+ if save_json:
164
+ # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
165
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
166
+ box = xyxy2xywh(predn[:, :4]) # xywh
167
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
168
+ for p, b in zip(pred.tolist(), box.tolist()):
169
+ jdict.append({'image_id': image_id,
170
+ 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
171
+ 'bbox': [round(x, 3) for x in b],
172
+ 'score': round(p[4], 5)})
173
+
174
+ # Assign all predictions as incorrect
175
+ correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
176
+ if nl:
177
+ detected = [] # target indices
178
+ tcls_tensor = labels[:, 0]
179
+
180
+ # target boxes
181
+ tbox = xywh2xyxy(labels[:, 1:5])
182
+ scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
183
+ if plots:
184
+ confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
185
+
186
+ # Per target class
187
+ for cls in torch.unique(tcls_tensor):
188
+ ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
189
+ pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
190
+
191
+ # Search for detections
192
+ if pi.shape[0]:
193
+ # Prediction to target ious
194
+ ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
195
+
196
+ # Append detections
197
+ detected_set = set()
198
+ for j in (ious > iouv[0]).nonzero(as_tuple=False):
199
+ d = ti[i[j]] # detected target
200
+ if d.item() not in detected_set:
201
+ detected_set.add(d.item())
202
+ detected.append(d)
203
+ correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
204
+ if len(detected) == nl: # all targets already located in image
205
+ break
206
+
207
+ # Append statistics (correct, conf, pcls, tcls)
208
+ stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
209
+
210
+ # Plot images
211
+ if plots and batch_i < 3:
212
+ f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
213
+ Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
214
+ f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
215
+ Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
216
+
217
+ # Compute statistics
218
+ stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
219
+ if len(stats) and stats[0].any():
220
+ p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
221
+ ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
222
+ mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
223
+ nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
224
+ else:
225
+ nt = torch.zeros(1)
226
+
227
+ # Print results
228
+ pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
229
+ print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
230
+
231
+ # Print results per class
232
+ if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
233
+ for i, c in enumerate(ap_class):
234
+ print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
235
+
236
+ # Print speeds
237
+ t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
238
+ if not training:
239
+ print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
240
+
241
+ # Plots
242
+ if plots:
243
+ confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
244
+ if wandb_logger and wandb_logger.wandb:
245
+ val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
246
+ wandb_logger.log({"Validation": val_batches})
247
+ if wandb_images:
248
+ wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
249
+
250
+ # Save JSON
251
+ if save_json and len(jdict):
252
+ w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
253
+ anno_json = './coco/annotations/instances_val2017.json' # annotations json
254
+ pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
255
+ print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
256
+ with open(pred_json, 'w') as f:
257
+ json.dump(jdict, f)
258
+
259
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
260
+ from pycocotools.coco import COCO
261
+ from pycocotools.cocoeval import COCOeval
262
+
263
+ anno = COCO(anno_json) # init annotations api
264
+ pred = anno.loadRes(pred_json) # init predictions api
265
+ eval = COCOeval(anno, pred, 'bbox')
266
+ if is_coco:
267
+ eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
268
+ eval.evaluate()
269
+ eval.accumulate()
270
+ eval.summarize()
271
+ map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
272
+ except Exception as e:
273
+ print(f'pycocotools unable to run: {e}')
274
+
275
+ # Return results
276
+ model.float() # for training
277
+ if not training:
278
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
279
+ print(f"Results saved to {save_dir}{s}")
280
+ maps = np.zeros(nc) + map
281
+ for i, c in enumerate(ap_class):
282
+ maps[c] = ap[i]
283
+ return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
284
+
285
+
286
+ if __name__ == '__main__':
287
+ parser = argparse.ArgumentParser(prog='test.py')
288
+ parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
289
+ parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
290
+ parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
291
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
292
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
293
+ parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
294
+ parser.add_argument('--task', default='val', help='train, val, test, speed or study')
295
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
296
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
297
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
298
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
299
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
300
+ parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
301
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
302
+ parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
303
+ parser.add_argument('--project', default='runs/test', help='save to project/name')
304
+ parser.add_argument('--name', default='exp', help='save to project/name')
305
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
306
+ parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
307
+ opt = parser.parse_args()
308
+ opt.save_json |= opt.data.endswith('coco.yaml')
309
+ opt.data = check_file(opt.data) # check file
310
+ print(opt)
311
+ #check_requirements()
312
+
313
+ if opt.task in ('train', 'val', 'test'): # run normally
314
+ test(opt.data,
315
+ opt.weights,
316
+ opt.batch_size,
317
+ opt.img_size,
318
+ opt.conf_thres,
319
+ opt.iou_thres,
320
+ opt.save_json,
321
+ opt.single_cls,
322
+ opt.augment,
323
+ opt.verbose,
324
+ save_txt=opt.save_txt | opt.save_hybrid,
325
+ save_hybrid=opt.save_hybrid,
326
+ save_conf=opt.save_conf,
327
+ trace=not opt.no_trace,
328
+ )
329
+
330
+ elif opt.task == 'speed': # speed benchmarks
331
+ for w in opt.weights:
332
+ test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False)
333
+
334
+ elif opt.task == 'study': # run over a range of settings and save/plot
335
+ # python test.py --task study --data coco.yaml --iou 0.65 --weights yolov7.pt
336
+ x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
337
+ for w in opt.weights:
338
+ f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
339
+ y = [] # y axis
340
+ for i in x: # img-size
341
+ print(f'\nRunning {f} point {i}...')
342
+ r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
343
+ plots=False)
344
+ y.append(r + t) # results and times
345
+ np.savetxt(f, y, fmt='%10.4g') # save
346
+ os.system('zip -r study.zip study_*.txt')
347
+ plot_study_txt(x=x) # plot