Spaces:
Runtime error
Runtime error
from sentiment_wrapper import PredictionModel | |
import gradio as gr | |
model = PredictionModel() | |
def predict(text:str): | |
result = model.predict([text])[0] | |
return f'class: {result}' | |
markdown_text = ''' | |
<br> | |
<br> | |
This space provides a gradio demo and an easy-to-run wrapper of the pre-trained model for fine-grained sentiment analysis in Norwegian language, pre-trained on the NoReC dataset. | |
Information about project you an fine on the website of [University of Oslo](https://www.mn.uio.no/ifi/english/research/projects/sant/) | |
## How to do inference? | |
Specify in config.json which model from saved_models you want to use. The model can be easily used for predicting sentiment as follows: | |
```python | |
from sentiment_wrapper import PredictionModel | |
model = PredictionModel() | |
model.predict(['vi liker svart kaffe', 'jeg elsker virkelig røde roser!']) | |
[5,5] | |
``` | |
## How to fine-tune? | |
For this run fine-tune.py and specify required arguments: | |
<ul> | |
<li>-dataframe: pandas dataframe with columns ['text', 'label', 'split'] with 3 possible values in 'split' ['train','dev','test']</li> | |
<li>-model: pre-traied model from huggingface or path to local folder with config.json in case you want to use custom wrapper</li> | |
</ul> | |
If you want to use custom wrapper, please specify: | |
-custom_wrapper = True | |
<ul> | |
<li>-custom_wrapper = True</li> | |
</ul> | |
There are also additional arguments possible but not required: | |
<ul> | |
<li>-lr</li> | |
<li>-max_length</li> | |
<li>-warmup</li> | |
<li>-epochs</li> | |
</ul> | |
''' | |
with gr.Blocks() as demo: | |
with gr.Row(equal_height=False) as row: | |
text_input = gr.Textbox(label="input") | |
text_output = gr.Textbox(label="output") | |
with gr.Row(scale=4) as row: | |
text_button = gr.Button("submit").style(full_width=True) | |
text_button.click(fn=predict, inputs=text_input, outputs=text_output) | |
gr.Markdown(markdown_text) | |
demo.launch() | |