|
import sys |
|
import torch |
|
from peft import PeftModel, PeftModelForCausalLM, LoraConfig |
|
import transformers |
|
import json |
|
import gradio as gr |
|
import argparse |
|
import warnings |
|
import os |
|
from datetime import datetime |
|
from utils import StreamPeftGenerationMixin,StreamLlamaForCausalLM, printf |
|
import utils |
|
import copy |
|
assert ( |
|
"LlamaTokenizer" in transformers._import_structure["models.llama"] |
|
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" |
|
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig |
|
import prompt |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model_path", type=str, default="decapoda-research/llama-7b-hf") |
|
parser.add_argument("--lora_path", type=str, default='') |
|
parser.add_argument("--use_typewriter", type=int, default=1) |
|
parser.add_argument("--prompt_type", type=str, default='chat') |
|
parser.add_argument("--share_link", type=int, default=0) |
|
parser.add_argument("--show_beam", type=int, default=0) |
|
parser.add_argument("--int8", type=int, default=1) |
|
args = parser.parse_args() |
|
args.fix_token = True |
|
printf('>>> args:', args) |
|
tokenizer = LlamaTokenizer.from_pretrained(args.model_path) |
|
|
|
LOAD_8BIT = args.int8 |
|
BASE_MODEL = args.model_path |
|
LORA_WEIGHTS = args.lora_path |
|
|
|
|
|
lora_bin_path = os.path.join(args.lora_path, "adapter_model.bin") |
|
if args.lora_path != '' and os.path.exists(args.lora_path): |
|
if not os.path.exists(lora_bin_path): |
|
pytorch_bin_path = os.path.join(args.lora_path, "pytorch_model.bin") |
|
printf('>>> load lora from', pytorch_bin_path) |
|
if os.path.exists(pytorch_bin_path): |
|
os.rename(pytorch_bin_path, lora_bin_path) |
|
warnings.warn( |
|
"The file name of the lora checkpoint'pytorch_model.bin' is replaced with 'adapter_model.bin'" |
|
) |
|
else: |
|
assert ('Checkpoint is not Found!') |
|
else: |
|
printf('>>> load lora from', lora_bin_path) |
|
else: |
|
printf('>>> load lora from huggingface url', args.lora_path) |
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
else: |
|
device = "cpu" |
|
|
|
try: |
|
if torch.backends.mps.is_available(): |
|
device = "mps" |
|
except: |
|
pass |
|
|
|
if device == "cuda": |
|
print(f'>>> load raw models from {BASE_MODEL}') |
|
if args.lora_path == "": |
|
model = StreamLlamaForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
load_in_8bit=LOAD_8BIT, |
|
torch_dtype=torch.float16, |
|
device_map={"": 0}, |
|
) |
|
else: |
|
print(f'>>> load lora models from {LORA_WEIGHTS}') |
|
model = LlamaForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
load_in_8bit=LOAD_8BIT, |
|
torch_dtype=torch.float16, |
|
device_map={"": 0}, |
|
) |
|
model = StreamPeftGenerationMixin.from_pretrained( |
|
model, LORA_WEIGHTS, torch_dtype=torch.float16, load_in_8bit=LOAD_8BIT, device_map={"": 0} |
|
) |
|
elif device == "mps": |
|
model = LlamaForCausalLM.from_pretrained( |
|
BASE_MODEL, |
|
device_map={"": device}, |
|
torch_dtype=torch.float16, |
|
) |
|
model = StreamPeftGenerationMixin.from_pretrained( |
|
model, |
|
LORA_WEIGHTS, |
|
device_map={"": device}, |
|
torch_dtype=torch.float16, |
|
) |
|
else: |
|
model = LlamaForCausalLM.from_pretrained( |
|
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True |
|
) |
|
model = StreamPeftGenerationMixin.from_pretrained( |
|
model, |
|
LORA_WEIGHTS, |
|
device_map={"": device}, |
|
) |
|
|
|
if args.fix_token and tokenizer.eos_token_id != 2: |
|
warnings.warn( |
|
"The tokenizer eos token may be wrong. please check you llama-checkpoint" |
|
) |
|
model.config.bos_token_id = tokenizer.bos_token_id = 1 |
|
model.config.eos_token_id = tokenizer.eos_token_id = 2 |
|
model.config.pad_token_id = tokenizer.pad_token_id = 0 |
|
if not LOAD_8BIT: |
|
model.half() |
|
|
|
model.eval() |
|
if torch.__version__ >= "2" and sys.platform != "win32": |
|
model = torch.compile(model) |
|
|
|
def save( |
|
inputs, |
|
history, |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
num_beams=4, |
|
max_new_tokens=128, |
|
min_new_tokens=1, |
|
repetition_penalty=2.0, |
|
max_memory=1024, |
|
do_sample=False, |
|
prompt_type='0', |
|
**kwargs, |
|
): |
|
history = [] if history is None else history |
|
data_point = {} |
|
if prompt_type == 'instruct': |
|
PROMPT = prompt.instruct_prompt(tokenizer,max_memory) |
|
elif prompt_type == 'chat': |
|
PROMPT = prompt.chat_prompt(tokenizer,max_memory) |
|
else: |
|
raise Exception('not support') |
|
data_point['history'] = history |
|
|
|
data_point['generation_parameter'] = { |
|
"temperature":temperature, |
|
"top_p":top_p, |
|
"top_k":top_k, |
|
"num_beams":num_beams, |
|
"bos_token_id":tokenizer.bos_token_id, |
|
"eos_token_id":tokenizer.eos_token_id, |
|
"pad_token_id":tokenizer.pad_token_id, |
|
"max_new_tokens":max_new_tokens, |
|
"min_new_tokens":min_new_tokens, |
|
"do_sample":do_sample, |
|
"repetition_penalty":repetition_penalty, |
|
"max_memory":max_memory, |
|
} |
|
data_point['info'] = args.__dict__ |
|
print(data_point) |
|
if args.int8: |
|
file_name = f"{args.lora_path}/{args.prompt_type.replace(' ','_')}_int8.jsonl" |
|
else: |
|
file_name = f"{args.lora_path}/{args.prompt_type.replace(' ','_')}_fp16.jsonl" |
|
utils.to_jsonl([data_point], file_name) |
|
|
|
def evaluate( |
|
inputs, |
|
history, |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
num_beams=4, |
|
max_new_tokens=128, |
|
min_new_tokens=1, |
|
repetition_penalty=2.0, |
|
max_memory=1024, |
|
do_sample=False, |
|
prompt_type='0', |
|
**kwargs, |
|
): |
|
history = [] if history is None else history |
|
data_point = {} |
|
if prompt_type == 'instruct': |
|
PROMPT = prompt.instruct_prompt(tokenizer,max_memory) |
|
elif prompt_type == 'chat': |
|
PROMPT = prompt.chat_prompt(tokenizer,max_memory) |
|
else: |
|
raise Exception('not support') |
|
|
|
data_point['history'] = copy.deepcopy(history) |
|
data_point['input'] = inputs |
|
|
|
input_ids = PROMPT.preprocess_gen(data_point) |
|
|
|
printf('------------------------------') |
|
printf(tokenizer.decode(input_ids)) |
|
input_ids = torch.tensor([input_ids]).to(device) |
|
|
|
printf('------------------------------') |
|
printf('shape',input_ids.size()) |
|
printf('------------------------------') |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
max_new_tokens=max_new_tokens, |
|
min_new_tokens=min_new_tokens, |
|
do_sample=do_sample, |
|
bad_words_ids=tokenizer(['\n\nUser:','\n\nAssistant:'], add_special_tokens=False).input_ids, |
|
|
|
**kwargs, |
|
) |
|
|
|
return_text = [(item['input'], item['output']) for item in history] |
|
out_memory =False |
|
outputs = None |
|
with torch.no_grad(): |
|
|
|
|
|
if args.use_typewriter: |
|
try: |
|
for generation_output in model.stream_generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=False, |
|
repetition_penalty=float(repetition_penalty), |
|
): |
|
gen_token = generation_output[0][-1].item() |
|
printf(gen_token, end='(') |
|
printf(tokenizer.decode(gen_token), end=') ') |
|
|
|
outputs = tokenizer.batch_decode(generation_output) |
|
if args.show_beam: |
|
show_text = "\n--------------------------------------------\n".join( |
|
[ PROMPT.postprocess(output)+" ▌" for output in outputs] |
|
) |
|
else: |
|
show_text = PROMPT.postprocess(outputs[0])+" ▌" |
|
yield return_text +[(inputs, show_text)], history |
|
except torch.cuda.OutOfMemoryError: |
|
print('CUDA out of memory') |
|
import gc |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
out_memory=True |
|
|
|
printf('[EOS]', end='\n') |
|
show_text = PROMPT.postprocess(outputs[0] if outputs is not None else '### Response:') |
|
return_len = len(show_text) |
|
if out_memory==True: |
|
out_memory=False |
|
show_text+= '<p style="color:#FF0000"> [GPU Out Of Memory] </p> ' |
|
if return_len > 0: |
|
output = PROMPT.postprocess(outputs[0], render=False) |
|
history.append({ |
|
'input': inputs, |
|
'output': output, |
|
}) |
|
|
|
return_text += [(inputs, show_text)] |
|
yield return_text, history |
|
|
|
else: |
|
try: |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens, |
|
repetition_penalty=float(repetition_penalty), |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s) |
|
output = PROMPT.postprocess(output) |
|
history.append({ |
|
'input': inputs, |
|
'output': output, |
|
}) |
|
return_text += [(inputs, output)] |
|
yield return_text, history |
|
except torch.cuda.OutOfMemoryError: |
|
import gc |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
show_text = '<p style="color:#FF0000"> [GPU Out Of Memory] </p> ' |
|
printf(show_text) |
|
return_text += [(inputs, show_text)] |
|
yield return_text, history |
|
|
|
def clear(): |
|
import gc |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
return None, None |
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
fn = evaluate |
|
title = gr.Markdown( |
|
"<h1 style='text-align: center; margin-bottom: 1rem'>" |
|
+ "Chinese-Vicuna 中文小羊驼" |
|
+ "</h1>" |
|
) |
|
description = gr.Markdown( |
|
"中文小羊驼由各种高质量的开源instruction数据集,结合Alpaca-lora的代码训练而来,模型基于开源的llama7B,主要贡献是对应的lora模型。由于代码训练资源要求较小,希望为llama中文lora社区做一份贡献。" |
|
) |
|
history = gr.components.State() |
|
with gr.Row().style(equal_height=False): |
|
with gr.Column(variant="panel"): |
|
input_component_column = gr.Column() |
|
with input_component_column: |
|
input = gr.components.Textbox( |
|
lines=2, label="Input", placeholder="请输入问题." |
|
) |
|
temperature = gr.components.Slider(minimum=0, maximum=1, value=1.0, label="Temperature") |
|
topp = gr.components.Slider(minimum=0, maximum=1, value=0.9, label="Top p") |
|
topk = gr.components.Slider(minimum=0, maximum=100, step=1, value=60, label="Top k") |
|
beam_number = gr.components.Slider(minimum=1, maximum=10, step=1, value=4, label="Beams Number") |
|
max_new_token = gr.components.Slider( |
|
minimum=1, maximum=2048, step=1, value=256, label="Max New Tokens" |
|
) |
|
min_new_token = gr.components.Slider( |
|
minimum=1, maximum=1024, step=1, value=5, label="Min New Tokens" |
|
) |
|
repeat_penal = gr.components.Slider( |
|
minimum=0.1, maximum=10.0, step=0.1, value=2.0, label="Repetition Penalty" |
|
) |
|
max_memory = gr.components.Slider( |
|
minimum=0, maximum=2048, step=1, value=2048, label="Max Memory" |
|
) |
|
do_sample = gr.components.Checkbox(label="Use sample") |
|
|
|
type_of_prompt = gr.components.Dropdown( |
|
['instruct', 'chat'], value=args.prompt_type, label="Prompt Type", info="select the specific prompt; use after clear history" |
|
) |
|
input_components = [ |
|
input, history, temperature, topp, topk, beam_number, max_new_token, min_new_token, repeat_penal, max_memory, do_sample, type_of_prompt |
|
] |
|
input_components_except_states = [input, temperature, topp, topk, beam_number, max_new_token, min_new_token, repeat_penal, max_memory, do_sample, type_of_prompt] |
|
with gr.Row(): |
|
cancel_btn = gr.Button('Cancel') |
|
submit_btn = gr.Button("Submit", variant="primary") |
|
stop_btn = gr.Button("Stop", variant="stop", visible=False) |
|
with gr.Row(): |
|
reset_btn = gr.Button("Reset Parameter") |
|
clear_history = gr.Button("Clear History") |
|
|
|
|
|
with gr.Column(variant="panel"): |
|
chatbot = gr.Chatbot().style(height=1024) |
|
output_components = [ chatbot, history ] |
|
with gr.Row(): |
|
save_btn = gr.Button("Save Chat") |
|
def wrapper(*args): |
|
|
|
try: |
|
for output in fn(*args): |
|
output = [o for o in output] |
|
|
|
yield output + [ |
|
gr.Button.update(visible=False), |
|
gr.Button.update(visible=True), |
|
] |
|
finally: |
|
yield [{'__type__': 'generic_update'}, {'__type__': 'generic_update'}] + [ gr.Button.update(visible=True), gr.Button.update(visible=False)] |
|
|
|
def cancel(history, chatbot): |
|
if history == []: |
|
return (None, None) |
|
return history[:-1], chatbot[:-1] |
|
|
|
extra_output = [submit_btn, stop_btn] |
|
save_btn.click( |
|
save, |
|
input_components, |
|
None, |
|
) |
|
pred = submit_btn.click( |
|
wrapper, |
|
input_components, |
|
output_components + extra_output, |
|
api_name="predict", |
|
scroll_to_output=True, |
|
preprocess=True, |
|
postprocess=True, |
|
batch=False, |
|
max_batch_size=4, |
|
) |
|
submit_btn.click( |
|
lambda: ( |
|
submit_btn.update(visible=False), |
|
stop_btn.update(visible=True), |
|
), |
|
inputs=None, |
|
outputs=[submit_btn, stop_btn], |
|
queue=False, |
|
) |
|
stop_btn.click( |
|
lambda: ( |
|
submit_btn.update(visible=True), |
|
stop_btn.update(visible=False), |
|
), |
|
inputs=None, |
|
outputs=[submit_btn, stop_btn], |
|
cancels=[pred], |
|
queue=False, |
|
) |
|
cancel_btn.click( |
|
cancel, |
|
inputs=[history, chatbot], |
|
outputs=[history, chatbot] |
|
) |
|
reset_btn.click( |
|
None, |
|
[], |
|
( |
|
|
|
input_components_except_states |
|
+ [input_component_column] |
|
), |
|
_js=f"""() => {json.dumps([ |
|
getattr(component, "cleared_value", None) for component in input_components_except_states ] |
|
+ ([gr.Column.update(visible=True)]) |
|
+ ([]) |
|
)} |
|
""", |
|
) |
|
clear_history.click(clear, None, [history, chatbot], queue=False) |
|
|
|
demo.queue().launch(share=args.share_link) |