Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
from __future__ import annotations | |
import pathlib | |
import gradio as gr | |
import cv2 | |
import mediapipe as mp | |
import numpy as np | |
mp_drawing = mp.solutions.drawing_utils | |
mp_drawing_styles = mp.solutions.drawing_styles | |
mp_pose = mp.solutions.pose | |
TITLE = "MediaPipe Human Pose Estimation" | |
DESCRIPTION = "https://google.github.io/mediapipe/" | |
def calculateAngle(landmark1, landmark2, landmark3): | |
''' | |
This function calculates angle between three different landmarks. | |
Args: | |
landmark1: The first landmark containing the x,y and z coordinates. | |
landmark2: The second landmark containing the x,y and z coordinates. | |
landmark3: The third landmark containing the x,y and z coordinates. | |
Returns: | |
angle: The calculated angle between the three landmarks. | |
''' | |
# Get the required landmarks coordinates. | |
x1, y1, _ = landmark1 | |
x2, y2, _ = landmark2 | |
x3, y3, _ = landmark3 | |
# Calculate the angle between the three points | |
angle = math.degrees(math.atan2(y3 - y2, x3 - x2) - math.atan2(y1 - y2, x1 - x2)) | |
# Check if the angle is less than zero. | |
if angle < 0: | |
# Add 360 to the found angle. | |
angle += 360 | |
# Return the calculated angle. | |
return angle | |
def classifyPose(landmarks, output_image, display=False): | |
''' | |
This function classifies yoga poses depending upon the angles of various body joints. | |
Args: | |
landmarks: A list of detected landmarks of the person whose pose needs to be classified. | |
output_image: A image of the person with the detected pose landmarks drawn. | |
display: A boolean value that is if set to true the function displays the resultant image with the pose label | |
written on it and returns nothing. | |
Returns: | |
output_image: The image with the detected pose landmarks drawn and pose label written. | |
label: The classified pose label of the person in the output_image. | |
''' | |
# Initialize the label of the pose. It is not known at this stage. | |
label = 'Unknown Pose' | |
# Specify the color (Red) with which the label will be written on the image. | |
color = (0, 0, 255) | |
# Calculate the required angles. | |
#---------------------------------------------------------------------------------------------------------------- | |
# Get the angle between the left shoulder, elbow and wrist points. | |
left_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value], | |
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value], | |
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value]) | |
# Get the angle between the right shoulder, elbow and wrist points. | |
right_elbow_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value], | |
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value], | |
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value]) | |
# Get the angle between the left elbow, shoulder and hip points. | |
left_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value], | |
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value], | |
landmarks[mp_pose.PoseLandmark.LEFT_HIP.value]) | |
# Get the angle between the right hip, shoulder and elbow points. | |
right_shoulder_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value], | |
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value], | |
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value]) | |
# Get the angle between the left hip, knee and ankle points. | |
left_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.LEFT_HIP.value], | |
landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value], | |
landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value]) | |
# Get the angle between the right hip, knee and ankle points | |
right_knee_angle = calculateAngle(landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value], | |
landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value], | |
landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value]) | |
#---------------------------------------------------------------------------------------------------------------- | |
# Check for Five-Pointed Star Pose | |
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value][1]) < 100 and \ | |
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value][1]) < 100 and \ | |
abs(landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value][0]) > 200 and \ | |
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0]) > 200: | |
label = "Five-Pointed Star Pose" | |
# Check if it is the warrior II pose or the T pose. | |
# As for both of them, both arms should be straight and shoulders should be at the specific angle. | |
#---------------------------------------------------------------------------------------------------------------- | |
# Check if the both arms are straight. | |
if left_elbow_angle > 165 and left_elbow_angle < 195 and right_elbow_angle > 165 and right_elbow_angle < 195: | |
# Check if shoulders are at the required angle. | |
if left_shoulder_angle > 80 and left_shoulder_angle < 110 and right_shoulder_angle > 80 and right_shoulder_angle < 110: | |
# Check if it is the warrior II pose. | |
#---------------------------------------------------------------------------------------------------------------- | |
# Check if one leg is straight. | |
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195: | |
# Check if the other leg is bended at the required angle. | |
if left_knee_angle > 90 and left_knee_angle < 120 or right_knee_angle > 90 and right_knee_angle < 120: | |
# Specify the label of the pose that is Warrior II pose. | |
label = 'Warrior II Pose' | |
#---------------------------------------------------------------------------------------------------------------- | |
# Check if it is the T pose. | |
#---------------------------------------------------------------------------------------------------------------- | |
# Check if both legs are straight | |
if left_knee_angle > 160 and left_knee_angle < 195 and right_knee_angle > 160 and right_knee_angle < 195: | |
# Specify the label of the pose that is tree pose. | |
label = 'T Pose' | |
#---------------------------------------------------------------------------------------------------------------- | |
# Check if it is the tree pose. | |
#---------------------------------------------------------------------------------------------------------------- | |
# Check if one leg is straight | |
if left_knee_angle > 165 and left_knee_angle < 195 or right_knee_angle > 165 and right_knee_angle < 195: | |
# Check if the other leg is bended at the required angle. | |
if left_knee_angle > 315 and left_knee_angle < 335 or right_knee_angle > 25 and right_knee_angle < 45: | |
# Specify the label of the pose that is tree pose. | |
label = 'Tree Pose' | |
# Check for Upward Salute Pose | |
if abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.LEFT_HIP.value][0]) < 100 and \ | |
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value][0]) < 100 and \ | |
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] < landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value][1] and \ | |
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] < landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value][1] and \ | |
abs(landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value][1] - landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value][1]) < 50: | |
label = "Upward Salute Pose" | |
# Check for Hands Under Feet Pose | |
if landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][1] > landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value][1] and \ | |
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][1] > landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value][1] and \ | |
abs(landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value][0]) < 50 and \ | |
abs(landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value][0] - landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value][0]) < 50: | |
label = "Hands Under Feet Pose" | |
#---------------------------------------------------------------------------------------------------------------- | |
# Check if the pose is classified successfully | |
if label != 'Unknown Pose': | |
# Update the color (to green) with which the label will be written on the image. | |
color = (0, 255, 0) | |
# Write the label on the output image. | |
cv2.putText(output_image, label, (10, 30),cv2.FONT_HERSHEY_PLAIN, 2, color, 2) | |
# Check if the resultant image is specified to be displayed. | |
if display: | |
# Display the resultant image. | |
plt.figure(figsize=[10,10]) | |
plt.imshow(output_image[:,:,::-1]);plt.title("Output Image");plt.axis('off'); | |
else: | |
# Return the output image and the classified label. | |
return output_image, label | |
def run( | |
image: np.ndarray, | |
model_complexity: int, | |
enable_segmentation: bool, | |
min_detection_confidence: float, | |
background_color: str, | |
) -> np.ndarray: | |
with mp_pose.Pose( | |
static_image_mode=True, | |
model_complexity=model_complexity, | |
enable_segmentation=enable_segmentation, | |
min_detection_confidence=min_detection_confidence, | |
) as pose: | |
results = pose.process(image) | |
res = image[:, :, ::-1].copy() | |
if enable_segmentation: | |
if background_color == "white": | |
bg_color = 255 | |
elif background_color == "black": | |
bg_color = 0 | |
elif background_color == "green": | |
bg_color = (0, 255, 0) # type: ignore | |
else: | |
raise ValueError | |
if results.segmentation_mask is not None: | |
res[results.segmentation_mask <= 0.1] = bg_color | |
else: | |
res[:] = bg_color | |
mp_drawing.draw_landmarks( | |
res, | |
results.pose_landmarks, | |
mp_pose.POSE_CONNECTIONS, | |
landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style(), | |
) | |
res, pose_classification = classify_pose(results.pose_landmarks.landmark, res) #Pose Classification code | |
return res[:, :, ::-1] | |
model_complexities = list(range(3)) | |
background_colors = ["white", "black", "green"] | |
image_paths = sorted(pathlib.Path("images").rglob("*.jpg")) | |
examples = [[path, model_complexities[1], True, 0.5, background_colors[0]] for path in image_paths] | |
demo = gr.Interface( | |
fn=run, | |
inputs=[ | |
gr.Image(label="Input", type="numpy"), | |
gr.Radio(label="Model Complexity", choices=model_complexities, type="index", value=model_complexities[1]), | |
gr.Checkbox(label="Enable Segmentation", value=True), | |
gr.Slider(label="Minimum Detection Confidence", minimum=0, maximum=1, step=0.05, value=0.5), | |
gr.Radio(label="Background Color", choices=background_colors, type="value", value=background_colors[0]), | |
], | |
outputs=[gr.Image(label="Output"), | |
examples=examples, | |
title=TITLE, | |
description=DESCRIPTION, | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() | |