Spaces:
Runtime error
Runtime error
Ankitajadhav
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,10 @@ sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
import chromadb
|
7 |
from datasets import load_dataset
|
8 |
-
from
|
|
|
|
|
|
|
9 |
|
10 |
# Embedding vector
|
11 |
class VectorStore:
|
@@ -45,12 +48,31 @@ vector_store = VectorStore("embedding_vector")
|
|
45 |
vector_store.populate_vectors(dataset)
|
46 |
|
47 |
|
48 |
-
#
|
49 |
-
#
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
|
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
import chromadb
|
7 |
from datasets import load_dataset
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
+
import gradio as gr
|
10 |
+
import faiss
|
11 |
+
|
12 |
|
13 |
# Embedding vector
|
14 |
class VectorStore:
|
|
|
48 |
vector_store.populate_vectors(dataset)
|
49 |
|
50 |
|
51 |
+
# Load the model and tokenizer
|
52 |
+
# text generation model
|
53 |
+
model_name = "meta-llama/Meta-Llama-3-8B"
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
55 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
56 |
+
|
57 |
+
# Define the chatbot response function
|
58 |
+
def chatbot_response(user_input):
|
59 |
+
global conversation_history
|
60 |
+
results = vector_store.search_context(user_input, n_results=1)
|
61 |
+
context = results['documents'][0] if results['documents'] else ""
|
62 |
+
conversation_history.append(f"User: {user_input}\nContext: {context[:150]}\nBot:")
|
63 |
+
inputs = tokenizer("\n".join(conversation_history), return_tensors="pt")
|
64 |
+
outputs = model.generate(**inputs, max_length=150, do_sample=True, temperature=0.7)
|
65 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
66 |
+
conversation_history.append(response)
|
67 |
+
return response
|
68 |
+
|
69 |
+
|
70 |
+
# Gradio interface
|
71 |
+
def chat(user_input):
|
72 |
+
response = chatbot_response(user_input)
|
73 |
+
return response
|
74 |
+
|
75 |
+
iface = gr.Interface(fn=chat, inputs="text", outputs="text")
|
76 |
+
iface.launch()
|
77 |
|
78 |
|