Spaces:
Runtime error
Runtime error
import gradio as gr | |
import copy | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
import chromadb | |
from sentence_transformers import SentenceTransformer | |
import logging | |
# Initialize logging | |
logging.basicConfig(level=logging.INFO) | |
# Initialize the Llama model | |
llm = Llama( | |
model_path=hf_hub_download( | |
repo_id="microsoft/Phi-3-mini-4k-instruct-gguf", | |
filename="Phi-3-mini-4k-instruct-q4.gguf", | |
), | |
n_ctx=2048, | |
n_gpu_layers=50, # Adjust based on your VRAM | |
) | |
# Initialize ChromaDB Vector Store | |
class VectorStore: | |
def __init__(self, collection_name): | |
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1') | |
self.chroma_client = chromadb.Client() | |
self.collection = self.chroma_client.create_collection(name=collection_name) | |
def populate_vectors(self, texts, ids): | |
embeddings = self.embedding_model.encode(texts, batch_size=32).tolist() | |
for text, embedding, doc_id in zip(texts, embeddings, ids): | |
self.collection.add(embeddings=[embedding], documents=[text], ids=[doc_id]) | |
def search_context(self, query, n_results=1): | |
query_embedding = self.embedding_model.encode([query]).tolist() | |
results = self.collection.query(query_embeddings=query_embedding, n_results=n_results) | |
return results['documents'] | |
# Example initialization (assuming you've already populated the vector store) | |
vector_store = VectorStore("embedding_vector") | |
def generate_text( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Retrieve context from vector store | |
context_results = vector_store.search_context(message, n_results=1) | |
context = context_results[0] if context_results else "" | |
input_prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n {context}\n" | |
for interaction in history: | |
input_prompt += f"{interaction[0]} [/INST] {interaction[1]} </s><s> [INST] " | |
input_prompt += f"{message} [/INST] " | |
logging.info("Input prompt:\n%s", input_prompt) # Debugging output | |
temp = "" | |
output = llm( | |
input_prompt, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=40, | |
repeat_penalty=1.1, | |
max_tokens=max_tokens, | |
stop=["", " \n", "ASSISTANT:", "USER:", "SYSTEM:"], | |
stream=True, | |
) | |
for out in output: | |
temp += out["choices"][0]["text"] | |
logging.info("Model output:\n%s", temp) # Log model output | |
yield temp | |
# Define the Gradio interface | |
demo = gr.Interface( | |
fn=generate_text, | |
title="LLM Chatbot with ChromaDB Integration", | |
description="Generate responses based on context and user queries.", | |
examples=[ | |
["I have leftover rice, what can I make out of it?"], | |
["Can I make lunch for two people with this?"], | |
], | |
inputs=[ | |
gr.Textbox(label="Message"), | |
gr.Textbox(label="System message", default="You are a friendly Chatbot."), | |
gr.Textbox(label="History", default="[('USER', 'Hi there!')]"), | |
gr.Slider(minimum=1, maximum=2048, step=1, default=512, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, step=0.1, default=0.7, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, step=0.05, default=0.95, label="Top-p (nucleus sampling)"), | |
], | |
outputs=gr.Textbox(label="Response"), | |
live=True, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |