Whats_Cooking / app.py
Ankitajadhav's picture
Create app.py
9cc7e25 verified
raw
history blame
2.6 kB
# import packages
__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
from sentence_transformers import SentenceTransformer
import chromadb
from datasets import load_dataset
from gpt4all import GPT4All
# Embedding vector
class VectorStore:
def __init__(self, collection_name):
# Initialize the embedding model
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
self.chroma_client = chromadb.Client()
self.collection = self.chroma_client.create_collection(name=collection_name)
# Method to populate the vector store with embeddings from a dataset
def populate_vectors(self, dataset):
# Select the text columns to concatenate
title = dataset['train']['title_cleaned'][:5000] # Limiting to 100 examples for the demo
recipe = dataset['train']['recipe_new'][:5000]
meal_type = dataset['train']['meal_type'][:5000]
allergy = dataset['train']['allergy_type'][:5000]
ingredients_alternative = dataset['train']['ingredients_alternatives'][:5000]
# Concatenate the text from both columns
texts = [f"{tit} {rep} {meal} {alle} {ingr} " for tit, rep, meal,alle, ingr in zip(title,recipe,meal_type,allergy,ingredients_alternative)]
for i, item in enumerate(texts):
embeddings = self.embedding_model.encode(item).tolist()
self.collection.add(embeddings=[embeddings], documents=[item], ids=[str(i)])
# # Method to search the ChromaDB collection for relevant context based on a query
def search_context(self, query, n_results=1):
query_embeddings = self.embedding_model.encode(query).tolist()
return self.collection.query(query_embeddings=query_embeddings, n_results=n_results)
# importing dataset hosted on huggingface
# dataset details - https://huggingface.co/datasets/Thefoodprocessor/recipe_new_with_features_full
dataset = load_dataset('Thefoodprocessor/recipe_new_with_features_full')
# create a vector embedding
vector_store = VectorStore("embedding_vector")
vector_store.populate_vectors(dataset)
# loading gpt4all language model
# load model Chat based model mistral-7b-openorca.gguf2.Q4_0.gguf
# detail about gpt4all and model information - https://gpt4all.io/index.html
model_name = 'Meta-Llama-3-8B-Instruct.Q4_0.gguf' # .gguf represents quantized model
model_path = "gpt4all"
# add path to download load the model locally, download once and load for subsequent inference
model = GPT4All(model_name=model_name, model_path=model_path,device="cuda")