Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import tempfile
|
4 |
+
import numpy as np
|
5 |
+
from collections import defaultdict
|
6 |
+
|
7 |
+
# Import your existing functions here
|
8 |
+
# from quadball_tracker import detect_balls, update_trackers, check_events, get_quadrant, COLOR_RANGES
|
9 |
+
|
10 |
+
def process_video(video_path):
|
11 |
+
cap = cv2.VideoCapture(video_path)
|
12 |
+
|
13 |
+
frame_count = 0
|
14 |
+
ball_trackers = defaultdict(lambda: defaultdict(dict))
|
15 |
+
events = []
|
16 |
+
|
17 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
18 |
+
|
19 |
+
progress_bar = st.progress(0)
|
20 |
+
status_text = st.empty()
|
21 |
+
|
22 |
+
while cap.isOpened():
|
23 |
+
ret, frame = cap.read()
|
24 |
+
if not ret:
|
25 |
+
break
|
26 |
+
|
27 |
+
frame_count += 1
|
28 |
+
|
29 |
+
progress_bar.progress(frame_count / total_frames)
|
30 |
+
status_text.text(f"Processing frame {frame_count}/{total_frames}")
|
31 |
+
|
32 |
+
try:
|
33 |
+
balls = detect_balls(frame)
|
34 |
+
update_trackers(ball_trackers, balls, frame_count)
|
35 |
+
new_events = check_events(ball_trackers, frame_count)
|
36 |
+
events.extend(new_events)
|
37 |
+
except Exception as e:
|
38 |
+
st.error(f"Error processing frame {frame_count}: {str(e)}")
|
39 |
+
|
40 |
+
cap.release()
|
41 |
+
return events
|
42 |
+
|
43 |
+
st.title('QuadBall Tracker 🔴🟢🔵🟡')
|
44 |
+
|
45 |
+
st.write("""
|
46 |
+
Welcome to QuadBall Tracker! This application uses computer vision to track colored balls
|
47 |
+
across different quadrants in a video. Upload your video to get started!
|
48 |
+
""")
|
49 |
+
|
50 |
+
uploaded_file = st.file_uploader("Choose a video file", type=["mp4", "avi", "mov"])
|
51 |
+
|
52 |
+
if uploaded_file is not None:
|
53 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
54 |
+
tfile.write(uploaded_file.read())
|
55 |
+
|
56 |
+
st.video(tfile.name)
|
57 |
+
|
58 |
+
if st.button('Process Video'):
|
59 |
+
events = process_video(tfile.name)
|
60 |
+
|
61 |
+
st.success('Video processing complete!')
|
62 |
+
|
63 |
+
st.subheader('Event Log')
|
64 |
+
for event in events:
|
65 |
+
st.write(f"Time: {event['time']}, Quadrant: {event['quadrant']}, "
|
66 |
+
f"Color: {event['color']}, Type: {event['type']}")
|
67 |
+
|
68 |
+
# Create a DataFrame for easy filtering
|
69 |
+
import pandas as pd
|
70 |
+
df = pd.DataFrame(events)
|
71 |
+
|
72 |
+
st.subheader('Filter Events')
|
73 |
+
color_filter = st.multiselect('Select colors', df['color'].unique())
|
74 |
+
quadrant_filter = st.multiselect('Select quadrants', df['quadrant'].unique())
|
75 |
+
|
76 |
+
filtered_df = df
|
77 |
+
if color_filter:
|
78 |
+
filtered_df = filtered_df[filtered_df['color'].isin(color_filter)]
|
79 |
+
if quadrant_filter:
|
80 |
+
filtered_df = filtered_df[filtered_df['quadrant'].isin(quadrant_filter)]
|
81 |
+
|
82 |
+
st.dataframe(filtered_df)
|
83 |
+
|
84 |
+
st.sidebar.title('About')
|
85 |
+
st.sidebar.info('This application uses computer vision to track colored balls across video quadrants. '
|
86 |
+
'Upload a video to see it in action!')
|