AnishKumbhar's picture
Update app.py
fbb5992
raw
history blame
893 Bytes
import fastapi
from transformers import pipeline
import pickle
# Load the model from the pickle file
with open("model.pkl", "rb") as f:
model = pickle.load(f)
# Define a function to preprocess the image
def preprocess_image(image):
# Resize the image to a fixed size
image = image.resize((224, 224))
# Convert the image to a NumPy array
image = np.array(image)
# Normalize the image
image = image / 255.0
# Return the image
return image
# Define an endpoint to predict the output
@app.post("/predict")
async def predict_endpoint(image: fastapi.File):
# Preprocess the image
image = preprocess_image(image)
# Make a prediction
prediction = model(image)
# Return the prediction
return {"prediction": prediction}
# Start the FastAPI app
if _name_ == "_main_":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)