Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,45 +5,25 @@ from datetime import datetime, timedelta
|
|
| 5 |
import difflib
|
| 6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 7 |
import torch
|
| 8 |
-
import yfinance as yf
|
| 9 |
from functools import lru_cache
|
| 10 |
import pandas as pd
|
| 11 |
-
import os
|
| 12 |
-
from pycharts import CompanyClient # Retained, but with fallback
|
| 13 |
|
| 14 |
# Define the list of tickers
|
| 15 |
tickers = ['TSLA', 'PLTR', 'SOUN', 'MSFT']
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
ycharts_api_key = os.environ.get('YCHARTS_API_KEY', 'your-api-key-here') # Placeholder; set in environment
|
| 19 |
-
company_client = CompanyClient(ycharts_api_key)
|
| 20 |
-
|
| 21 |
-
# Prefetch stock data for all tickers at startup, preferring yfinance for adjusted prices
|
| 22 |
all_data = {}
|
| 23 |
try:
|
| 24 |
now = datetime.now().strftime('%Y-%m-%d')
|
| 25 |
for ticker in tickers:
|
| 26 |
-
|
| 27 |
-
try:
|
| 28 |
-
past = datetime(2020, 1, 1)
|
| 29 |
-
series_rsp = company_client.get_series([ticker], ['price'], query_start_date=past, query_end_date=now)
|
| 30 |
-
if ticker in series_rsp and 'price' in series_rsp[ticker]:
|
| 31 |
-
df = pd.DataFrame({
|
| 32 |
-
'Date': series_rsp[ticker]['dates'],
|
| 33 |
-
'Close': series_rsp[ticker]['price']['values'] # Likely unadjusted
|
| 34 |
-
}).set_index('Date')
|
| 35 |
-
all_data[ticker] = df
|
| 36 |
-
raise Exception("Fallback to yfinance") # Force fallback for accuracy in this update
|
| 37 |
-
except:
|
| 38 |
-
# Use yfinance for adjusted data
|
| 39 |
-
all_data[ticker] = yf.download(ticker, start='2020-01-01', end=now)
|
| 40 |
except Exception as e:
|
| 41 |
-
print(f"Error prefetching data: {e}
|
| 42 |
-
all_data = {ticker:
|
| 43 |
-
for ticker in tickers}
|
| 44 |
|
| 45 |
# Create a DataFrame with 'Adj Close' columns for each ticker
|
| 46 |
-
adj_close_data = pd.DataFrame({ticker: data['
|
| 47 |
|
| 48 |
# Display the first few rows to verify (for debugging; remove in production)
|
| 49 |
print(adj_close_data.head())
|
|
@@ -53,21 +33,28 @@ available_symbols = ['TSLA', 'MSFT', 'NVDA', 'GOOG', 'AMZN', 'SPY', 'AAPL', 'MET
|
|
| 53 |
|
| 54 |
@lru_cache(maxsize=100)
|
| 55 |
def fetch_stock_data(symbol, start_date, end_date):
|
| 56 |
-
if symbol in all_data:
|
| 57 |
# Use preloaded data and slice by date
|
| 58 |
hist = all_data[symbol]
|
| 59 |
return hist[(hist.index >= start_date) & (hist.index <= end_date)]
|
| 60 |
else:
|
| 61 |
-
#
|
| 62 |
try:
|
| 63 |
ticker = yf.Ticker(symbol)
|
| 64 |
-
hist = ticker.history(start=start_date, end=end_date)
|
| 65 |
return hist
|
| 66 |
except Exception as e:
|
| 67 |
print(f"Error fetching data for {symbol}: {e}")
|
| 68 |
return None
|
| 69 |
|
| 70 |
def parse_period(query):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
match = re.search(r'(\d+)\s*(year|month|week|day)s?', query.lower())
|
| 72 |
if match:
|
| 73 |
num = int(match.group(1))
|
|
@@ -89,10 +76,10 @@ def find_closest_symbol(input_symbol):
|
|
| 89 |
|
| 90 |
def calculate_growth_rate(start_date, end_date, symbol):
|
| 91 |
hist = fetch_stock_data(symbol, start_date.strftime('%Y-%m-%d'), end_date.strftime('%Y-%m-%d'))
|
| 92 |
-
if hist is None or hist.empty or '
|
| 93 |
return None
|
| 94 |
-
beginning_value = hist.iloc[0]['
|
| 95 |
-
ending_value = hist.iloc[-1]['
|
| 96 |
years = (end_date - start_date).days / 365.25
|
| 97 |
if years <= 0:
|
| 98 |
return 0
|
|
@@ -137,10 +124,16 @@ def generate_response(user_query, enable_thinking=False):
|
|
| 137 |
"You are FinChat, a knowledgeable financial advisor. Always respond in a friendly, professional manner. "
|
| 138 |
"For greetings like 'Hi' or 'Hello', reply warmly, e.g., 'Hi! I'm FinChat, your financial advisor. What can I help you with today regarding stocks, investments, or advice?' "
|
| 139 |
"Provide accurate, concise advice based on data."
|
| 140 |
-
# Assume continuation of original prompt here if additional text exists
|
| 141 |
)
|
| 142 |
-
#
|
|
|
|
| 143 |
|
| 144 |
-
# Gradio interface setup
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import difflib
|
| 6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 7 |
import torch
|
| 8 |
+
import yfinance as yf
|
| 9 |
from functools import lru_cache
|
| 10 |
import pandas as pd
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Define the list of tickers
|
| 13 |
tickers = ['TSLA', 'PLTR', 'SOUN', 'MSFT']
|
| 14 |
|
| 15 |
+
# Prefetch stock data for all tickers at startup using yfinance
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
all_data = {}
|
| 17 |
try:
|
| 18 |
now = datetime.now().strftime('%Y-%m-%d')
|
| 19 |
for ticker in tickers:
|
| 20 |
+
all_data[ticker] = yf.download(ticker, start='2020-01-01', end=now, auto_adjust=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
except Exception as e:
|
| 22 |
+
print(f"Error prefetching data: {e}")
|
| 23 |
+
all_data = {ticker: pd.DataFrame() for ticker in tickers} # Initialize empty DataFrames on failure
|
|
|
|
| 24 |
|
| 25 |
# Create a DataFrame with 'Adj Close' columns for each ticker
|
| 26 |
+
adj_close_data = pd.DataFrame({ticker: data['Close'] for ticker, data in all_data.items() if not data.empty})
|
| 27 |
|
| 28 |
# Display the first few rows to verify (for debugging; remove in production)
|
| 29 |
print(adj_close_data.head())
|
|
|
|
| 33 |
|
| 34 |
@lru_cache(maxsize=100)
|
| 35 |
def fetch_stock_data(symbol, start_date, end_date):
|
| 36 |
+
if symbol in all_data and not all_data[symbol].empty:
|
| 37 |
# Use preloaded data and slice by date
|
| 38 |
hist = all_data[symbol]
|
| 39 |
return hist[(hist.index >= start_date) & (hist.index <= end_date)]
|
| 40 |
else:
|
| 41 |
+
# Fetch on-demand with yfinance
|
| 42 |
try:
|
| 43 |
ticker = yf.Ticker(symbol)
|
| 44 |
+
hist = ticker.history(start=start_date, end=end_date, auto_adjust=True)
|
| 45 |
return hist
|
| 46 |
except Exception as e:
|
| 47 |
print(f"Error fetching data for {symbol}: {e}")
|
| 48 |
return None
|
| 49 |
|
| 50 |
def parse_period(query):
|
| 51 |
+
# Enhanced to handle year ranges like "between 2010 and 2020"
|
| 52 |
+
range_match = re.search(r'between\s+(\d{4})\s+and\s+(\d{4})', query.lower())
|
| 53 |
+
if range_match:
|
| 54 |
+
start_year = int(range_match.group(1))
|
| 55 |
+
end_year = int(range_match.group(2))
|
| 56 |
+
return (datetime(end_year, 12, 31) - datetime(start_year, 1, 1))
|
| 57 |
+
# Fallback to original period parsing
|
| 58 |
match = re.search(r'(\d+)\s*(year|month|week|day)s?', query.lower())
|
| 59 |
if match:
|
| 60 |
num = int(match.group(1))
|
|
|
|
| 76 |
|
| 77 |
def calculate_growth_rate(start_date, end_date, symbol):
|
| 78 |
hist = fetch_stock_data(symbol, start_date.strftime('%Y-%m-%d'), end_date.strftime('%Y-%m-%d'))
|
| 79 |
+
if hist is None or hist.empty or 'Close' not in hist.columns:
|
| 80 |
return None
|
| 81 |
+
beginning_value = hist.iloc[0]['Close'] # Use 'Close' as yfinance with auto_adjust=True returns adjusted prices
|
| 82 |
+
ending_value = hist.iloc[-1]['Close']
|
| 83 |
years = (end_date - start_date).days / 365.25
|
| 84 |
if years <= 0:
|
| 85 |
return 0
|
|
|
|
| 124 |
"You are FinChat, a knowledgeable financial advisor. Always respond in a friendly, professional manner. "
|
| 125 |
"For greetings like 'Hi' or 'Hello', reply warmly, e.g., 'Hi! I'm FinChat, your financial advisor. What can I help you with today regarding stocks, investments, or advice?' "
|
| 126 |
"Provide accurate, concise advice based on data."
|
|
|
|
| 127 |
)
|
| 128 |
+
# Placeholder for generation logic (tokenize, generate, decode)
|
| 129 |
+
return summary or "Please provide a specific stock or investment query."
|
| 130 |
|
| 131 |
+
# Gradio interface setup
|
| 132 |
+
demo = gr.Interface(
|
| 133 |
+
fn=generate_response,
|
| 134 |
+
inputs=[gr.Textbox(lines=2, placeholder="Enter your query (e.g., 'TSLA CAGR between 2010 and 2020')"), gr.Checkbox(label="Enable Thinking")],
|
| 135 |
+
outputs="text",
|
| 136 |
+
title="FinChat",
|
| 137 |
+
description="Ask about stock performance, CAGR, or investments."
|
| 138 |
+
)
|
| 139 |
+
demo.launch()
|