Spaces:
Restarting
Restarting
first commit
Browse files
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
|
4 |
+
from transformers import (
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
AutoTokenizer
|
7 |
+
)
|
8 |
+
from peft import PeftModel
|
9 |
+
import torch
|
10 |
+
|
11 |
+
model_path = "Qwen/Qwen1.5-1.8B-Chat"
|
12 |
+
lora_path = "AngoHF/EssayGPT" #+ "/checkpoint-100"
|
13 |
+
|
14 |
+
if torch.cuda.is_available():
|
15 |
+
device = "cuda:0"
|
16 |
+
else:
|
17 |
+
device = "cpu"
|
18 |
+
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
20 |
+
model_path,
|
21 |
+
)
|
22 |
+
config_kwargs = {"device_map": device}
|
23 |
+
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(
|
25 |
+
model_path,
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
**config_kwargs
|
28 |
+
)
|
29 |
+
|
30 |
+
model = PeftModel.from_pretrained(model, lora_path)
|
31 |
+
model = model.merge_and_unload()
|
32 |
+
model.eval()
|
33 |
+
|
34 |
+
# model.config.use_cache = True
|
35 |
+
# model.to("cpu")
|
36 |
+
# model.save_pretrained("/data/ango/EssayGPT")
|
37 |
+
|
38 |
+
# tokenizer.save_pretrained("/data/ango/EssayGPT")
|
39 |
+
|
40 |
+
|
41 |
+
MAX_MATERIALS = 4
|
42 |
+
|
43 |
+
|
44 |
+
def call(related_materials, materials, question):
|
45 |
+
query_texts = [f"材料{i + 1}\n{material}" for i, material in enumerate(materials) if i in related_materials]
|
46 |
+
query_texts.append(f"问题:{question}")
|
47 |
+
query = "\n".join(query_texts)
|
48 |
+
messages = [
|
49 |
+
{"role": "system", "content": "请你根据以下提供的材料来回答问题"},
|
50 |
+
{"role": "user", "content": query}
|
51 |
+
]
|
52 |
+
text = tokenizer.apply_chat_template(
|
53 |
+
messages,
|
54 |
+
tokenize=False,
|
55 |
+
add_generation_prompt=True
|
56 |
+
)
|
57 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
58 |
+
print(len(model_inputs.input_ids[0]))
|
59 |
+
generated_ids = model.generate(
|
60 |
+
model_inputs.input_ids,
|
61 |
+
max_length=8096
|
62 |
+
)
|
63 |
+
generated_ids = [
|
64 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
65 |
+
]
|
66 |
+
|
67 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
68 |
+
return response
|
69 |
+
|
70 |
+
|
71 |
+
def create_ui():
|
72 |
+
with gr.Blocks() as app:
|
73 |
+
gr.Markdown("""<center><font size=8>EssayGPT-申论大模型</center>""")
|
74 |
+
gr.Markdown(
|
75 |
+
"""<center><font size=4>1.把材料填入对应位置 2.输入问题和要求 3.选择解答问题需要的相关材料 4.点击"提问!"</center>""")
|
76 |
+
with gr.Row():
|
77 |
+
with gr.Column():
|
78 |
+
materials = []
|
79 |
+
|
80 |
+
for i in range(MAX_MATERIALS):
|
81 |
+
with gr.Tab(f"材料{i + 1}"):
|
82 |
+
materials.append(gr.Textbox(label="材料内容"))
|
83 |
+
with gr.Column():
|
84 |
+
related_materials = gr.Dropdown(
|
85 |
+
choices=list(range(1, MAX_MATERIALS + 1)), multiselect=True,
|
86 |
+
label="问题所需相关材料")
|
87 |
+
question = gr.Textbox(label="问题")
|
88 |
+
submit = gr.Button("提问!")
|
89 |
+
answer = gr.Textbox(label="回答")
|
90 |
+
build_ui({"materials": materials, "related_materials": related_materials, "question": question,
|
91 |
+
"submit": submit, "answer": answer})
|
92 |
+
return app
|
93 |
+
|
94 |
+
|
95 |
+
def build_ui(components):
|
96 |
+
def func(related_materials, question, *materials):
|
97 |
+
if not related_materials:
|
98 |
+
return "请选择问题所需相关材料"
|
99 |
+
related_materials = [i - 1 for i in related_materials]
|
100 |
+
return call(related_materials, materials, question)
|
101 |
+
|
102 |
+
components["submit"].click(func,
|
103 |
+
[components["related_materials"], components["question"], *components["materials"]],
|
104 |
+
components["answer"])
|
105 |
+
|
106 |
+
|
107 |
+
def run():
|
108 |
+
app = create_ui()
|
109 |
+
app.queue()
|
110 |
+
app.launch(share=True)
|
111 |
+
|
112 |
+
|
113 |
+
if __name__ == '__main__':
|
114 |
+
run()
|