SakuraD's picture
update
cdfecf8
from mmcv.cnn import build_conv_layer, build_norm_layer
from torch import nn as nn
class ResLayer(nn.Sequential):
"""ResLayer to build ResNet style backbone.
Args:
block (nn.Module): block used to build ResLayer.
inplanes (int): inplanes of block.
planes (int): planes of block.
num_blocks (int): number of blocks.
stride (int): stride of the first block. Default: 1
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottleneck. Default: False
conv_cfg (dict): dictionary to construct and config conv layer.
Default: None
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
downsample_first (bool): Downsample at the first block or last block.
False for Hourglass, True for ResNet. Default: True
"""
def __init__(self,
block,
inplanes,
planes,
num_blocks,
stride=1,
avg_down=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
downsample_first=True,
**kwargs):
self.block = block
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = []
conv_stride = stride
if avg_down:
conv_stride = 1
downsample.append(
nn.AvgPool2d(
kernel_size=stride,
stride=stride,
ceil_mode=True,
count_include_pad=False))
downsample.extend([
build_conv_layer(
conv_cfg,
inplanes,
planes * block.expansion,
kernel_size=1,
stride=conv_stride,
bias=False),
build_norm_layer(norm_cfg, planes * block.expansion)[1]
])
downsample = nn.Sequential(*downsample)
layers = []
if downsample_first:
layers.append(
block(
inplanes=inplanes,
planes=planes,
stride=stride,
downsample=downsample,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
**kwargs))
inplanes = planes * block.expansion
for _ in range(1, num_blocks):
layers.append(
block(
inplanes=inplanes,
planes=planes,
stride=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
**kwargs))
else: # downsample_first=False is for HourglassModule
for _ in range(num_blocks - 1):
layers.append(
block(
inplanes=inplanes,
planes=inplanes,
stride=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
**kwargs))
layers.append(
block(
inplanes=inplanes,
planes=planes,
stride=stride,
downsample=downsample,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
**kwargs))
super(ResLayer, self).__init__(*layers)
class SimplifiedBasicBlock(nn.Module):
"""Simplified version of original basic residual block. This is used in
`SCNet <https://arxiv.org/abs/2012.10150>`_.
- Norm layer is now optional
- Last ReLU in forward function is removed
"""
expansion = 1
def __init__(self,
inplanes,
planes,
stride=1,
dilation=1,
downsample=None,
style='pytorch',
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
dcn=None,
plugins=None):
super(SimplifiedBasicBlock, self).__init__()
assert dcn is None, 'Not implemented yet.'
assert plugins is None, 'Not implemented yet.'
assert not with_cp, 'Not implemented yet.'
self.with_norm = norm_cfg is not None
with_bias = True if norm_cfg is None else False
self.conv1 = build_conv_layer(
conv_cfg,
inplanes,
planes,
3,
stride=stride,
padding=dilation,
dilation=dilation,
bias=with_bias)
if self.with_norm:
self.norm1_name, norm1 = build_norm_layer(
norm_cfg, planes, postfix=1)
self.add_module(self.norm1_name, norm1)
self.conv2 = build_conv_layer(
conv_cfg, planes, planes, 3, padding=1, bias=with_bias)
if self.with_norm:
self.norm2_name, norm2 = build_norm_layer(
norm_cfg, planes, postfix=2)
self.add_module(self.norm2_name, norm2)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
self.dilation = dilation
self.with_cp = with_cp
@property
def norm1(self):
"""nn.Module: normalization layer after the first convolution layer"""
return getattr(self, self.norm1_name) if self.with_norm else None
@property
def norm2(self):
"""nn.Module: normalization layer after the second convolution layer"""
return getattr(self, self.norm2_name) if self.with_norm else None
def forward(self, x):
"""Forward function."""
identity = x
out = self.conv1(x)
if self.with_norm:
out = self.norm1(out)
out = self.relu(out)
out = self.conv2(out)
if self.with_norm:
out = self.norm2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out