Spaces:
Build error
Build error
import numpy as np | |
import torch | |
from mmcv.cnn import normal_init | |
from mmcv.runner import force_fp32 | |
from mmdet.core import (anchor_inside_flags, images_to_levels, multi_apply, | |
unmap) | |
from ..builder import HEADS | |
from ..losses.accuracy import accuracy | |
from ..losses.utils import weight_reduce_loss | |
from .retina_head import RetinaHead | |
class FSAFHead(RetinaHead): | |
"""Anchor-free head used in `FSAF <https://arxiv.org/abs/1903.00621>`_. | |
The head contains two subnetworks. The first classifies anchor boxes and | |
the second regresses deltas for the anchors (num_anchors is 1 for anchor- | |
free methods) | |
Args: | |
*args: Same as its base class in :class:`RetinaHead` | |
score_threshold (float, optional): The score_threshold to calculate | |
positive recall. If given, prediction scores lower than this value | |
is counted as incorrect prediction. Default to None. | |
**kwargs: Same as its base class in :class:`RetinaHead` | |
Example: | |
>>> import torch | |
>>> self = FSAFHead(11, 7) | |
>>> x = torch.rand(1, 7, 32, 32) | |
>>> cls_score, bbox_pred = self.forward_single(x) | |
>>> # Each anchor predicts a score for each class except background | |
>>> cls_per_anchor = cls_score.shape[1] / self.num_anchors | |
>>> box_per_anchor = bbox_pred.shape[1] / self.num_anchors | |
>>> assert cls_per_anchor == self.num_classes | |
>>> assert box_per_anchor == 4 | |
""" | |
def __init__(self, *args, score_threshold=None, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.score_threshold = score_threshold | |
def forward_single(self, x): | |
"""Forward feature map of a single scale level. | |
Args: | |
x (Tensor): Feature map of a single scale level. | |
Returns: | |
tuple (Tensor): | |
cls_score (Tensor): Box scores for each scale level | |
Has shape (N, num_points * num_classes, H, W). | |
bbox_pred (Tensor): Box energies / deltas for each scale | |
level with shape (N, num_points * 4, H, W). | |
""" | |
cls_score, bbox_pred = super().forward_single(x) | |
# relu: TBLR encoder only accepts positive bbox_pred | |
return cls_score, self.relu(bbox_pred) | |
def init_weights(self): | |
"""Initialize weights of the head.""" | |
super(FSAFHead, self).init_weights() | |
# The positive bias in self.retina_reg conv is to prevent predicted \ | |
# bbox with 0 area | |
normal_init(self.retina_reg, std=0.01, bias=0.25) | |
def _get_targets_single(self, | |
flat_anchors, | |
valid_flags, | |
gt_bboxes, | |
gt_bboxes_ignore, | |
gt_labels, | |
img_meta, | |
label_channels=1, | |
unmap_outputs=True): | |
"""Compute regression and classification targets for anchors in a | |
single image. | |
Most of the codes are the same with the base class | |
:obj: `AnchorHead`, except that it also collects and returns | |
the matched gt index in the image (from 0 to num_gt-1). If the | |
anchor bbox is not matched to any gt, the corresponding value in | |
pos_gt_inds is -1. | |
""" | |
inside_flags = anchor_inside_flags(flat_anchors, valid_flags, | |
img_meta['img_shape'][:2], | |
self.train_cfg.allowed_border) | |
if not inside_flags.any(): | |
return (None, ) * 7 | |
# Assign gt and sample anchors | |
anchors = flat_anchors[inside_flags.type(torch.bool), :] | |
assign_result = self.assigner.assign( | |
anchors, gt_bboxes, gt_bboxes_ignore, | |
None if self.sampling else gt_labels) | |
sampling_result = self.sampler.sample(assign_result, anchors, | |
gt_bboxes) | |
num_valid_anchors = anchors.shape[0] | |
bbox_targets = torch.zeros_like(anchors) | |
bbox_weights = torch.zeros_like(anchors) | |
labels = anchors.new_full((num_valid_anchors, ), | |
self.num_classes, | |
dtype=torch.long) | |
label_weights = anchors.new_zeros((num_valid_anchors, label_channels), | |
dtype=torch.float) | |
pos_gt_inds = anchors.new_full((num_valid_anchors, ), | |
-1, | |
dtype=torch.long) | |
pos_inds = sampling_result.pos_inds | |
neg_inds = sampling_result.neg_inds | |
if len(pos_inds) > 0: | |
if not self.reg_decoded_bbox: | |
pos_bbox_targets = self.bbox_coder.encode( | |
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) | |
else: | |
# When the regression loss (e.g. `IouLoss`, `GIouLoss`) | |
# is applied directly on the decoded bounding boxes, both | |
# the predicted boxes and regression targets should be with | |
# absolute coordinate format. | |
pos_bbox_targets = sampling_result.pos_gt_bboxes | |
bbox_targets[pos_inds, :] = pos_bbox_targets | |
bbox_weights[pos_inds, :] = 1.0 | |
# The assigned gt_index for each anchor. (0-based) | |
pos_gt_inds[pos_inds] = sampling_result.pos_assigned_gt_inds | |
if gt_labels is None: | |
# Only rpn gives gt_labels as None | |
# Foreground is the first class | |
labels[pos_inds] = 0 | |
else: | |
labels[pos_inds] = gt_labels[ | |
sampling_result.pos_assigned_gt_inds] | |
if self.train_cfg.pos_weight <= 0: | |
label_weights[pos_inds] = 1.0 | |
else: | |
label_weights[pos_inds] = self.train_cfg.pos_weight | |
if len(neg_inds) > 0: | |
label_weights[neg_inds] = 1.0 | |
# shadowed_labels is a tensor composed of tuples | |
# (anchor_inds, class_label) that indicate those anchors lying in the | |
# outer region of a gt or overlapped by another gt with a smaller | |
# area. | |
# | |
# Therefore, only the shadowed labels are ignored for loss calculation. | |
# the key `shadowed_labels` is defined in :obj:`CenterRegionAssigner` | |
shadowed_labels = assign_result.get_extra_property('shadowed_labels') | |
if shadowed_labels is not None and shadowed_labels.numel(): | |
if len(shadowed_labels.shape) == 2: | |
idx_, label_ = shadowed_labels[:, 0], shadowed_labels[:, 1] | |
assert (labels[idx_] != label_).all(), \ | |
'One label cannot be both positive and ignored' | |
label_weights[idx_, label_] = 0 | |
else: | |
label_weights[shadowed_labels] = 0 | |
# map up to original set of anchors | |
if unmap_outputs: | |
num_total_anchors = flat_anchors.size(0) | |
labels = unmap(labels, num_total_anchors, inside_flags) | |
label_weights = unmap(label_weights, num_total_anchors, | |
inside_flags) | |
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags) | |
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags) | |
pos_gt_inds = unmap( | |
pos_gt_inds, num_total_anchors, inside_flags, fill=-1) | |
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, | |
neg_inds, sampling_result, pos_gt_inds) | |
def loss(self, | |
cls_scores, | |
bbox_preds, | |
gt_bboxes, | |
gt_labels, | |
img_metas, | |
gt_bboxes_ignore=None): | |
"""Compute loss of the head. | |
Args: | |
cls_scores (list[Tensor]): Box scores for each scale level | |
Has shape (N, num_points * num_classes, H, W). | |
bbox_preds (list[Tensor]): Box energies / deltas for each scale | |
level with shape (N, num_points * 4, H, W). | |
gt_bboxes (list[Tensor]): each item are the truth boxes for each | |
image in [tl_x, tl_y, br_x, br_y] format. | |
gt_labels (list[Tensor]): class indices corresponding to each box | |
img_metas (list[dict]): Meta information of each image, e.g., | |
image size, scaling factor, etc. | |
gt_bboxes_ignore (None | list[Tensor]): specify which bounding | |
boxes can be ignored when computing the loss. | |
Returns: | |
dict[str, Tensor]: A dictionary of loss components. | |
""" | |
for i in range(len(bbox_preds)): # loop over fpn level | |
# avoid 0 area of the predicted bbox | |
bbox_preds[i] = bbox_preds[i].clamp(min=1e-4) | |
# TODO: It may directly use the base-class loss function. | |
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] | |
assert len(featmap_sizes) == self.anchor_generator.num_levels | |
batch_size = len(gt_bboxes) | |
device = cls_scores[0].device | |
anchor_list, valid_flag_list = self.get_anchors( | |
featmap_sizes, img_metas, device=device) | |
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1 | |
cls_reg_targets = self.get_targets( | |
anchor_list, | |
valid_flag_list, | |
gt_bboxes, | |
img_metas, | |
gt_bboxes_ignore_list=gt_bboxes_ignore, | |
gt_labels_list=gt_labels, | |
label_channels=label_channels) | |
if cls_reg_targets is None: | |
return None | |
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, | |
num_total_pos, num_total_neg, | |
pos_assigned_gt_inds_list) = cls_reg_targets | |
num_gts = np.array(list(map(len, gt_labels))) | |
num_total_samples = ( | |
num_total_pos + num_total_neg if self.sampling else num_total_pos) | |
# anchor number of multi levels | |
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] | |
# concat all level anchors and flags to a single tensor | |
concat_anchor_list = [] | |
for i in range(len(anchor_list)): | |
concat_anchor_list.append(torch.cat(anchor_list[i])) | |
all_anchor_list = images_to_levels(concat_anchor_list, | |
num_level_anchors) | |
losses_cls, losses_bbox = multi_apply( | |
self.loss_single, | |
cls_scores, | |
bbox_preds, | |
all_anchor_list, | |
labels_list, | |
label_weights_list, | |
bbox_targets_list, | |
bbox_weights_list, | |
num_total_samples=num_total_samples) | |
# `pos_assigned_gt_inds_list` (length: fpn_levels) stores the assigned | |
# gt index of each anchor bbox in each fpn level. | |
cum_num_gts = list(np.cumsum(num_gts)) # length of batch_size | |
for i, assign in enumerate(pos_assigned_gt_inds_list): | |
# loop over fpn levels | |
for j in range(1, batch_size): | |
# loop over batch size | |
# Convert gt indices in each img to those in the batch | |
assign[j][assign[j] >= 0] += int(cum_num_gts[j - 1]) | |
pos_assigned_gt_inds_list[i] = assign.flatten() | |
labels_list[i] = labels_list[i].flatten() | |
num_gts = sum(map(len, gt_labels)) # total number of gt in the batch | |
# The unique label index of each gt in the batch | |
label_sequence = torch.arange(num_gts, device=device) | |
# Collect the average loss of each gt in each level | |
with torch.no_grad(): | |
loss_levels, = multi_apply( | |
self.collect_loss_level_single, | |
losses_cls, | |
losses_bbox, | |
pos_assigned_gt_inds_list, | |
labels_seq=label_sequence) | |
# Shape: (fpn_levels, num_gts). Loss of each gt at each fpn level | |
loss_levels = torch.stack(loss_levels, dim=0) | |
# Locate the best fpn level for loss back-propagation | |
if loss_levels.numel() == 0: # zero gt | |
argmin = loss_levels.new_empty((num_gts, ), dtype=torch.long) | |
else: | |
_, argmin = loss_levels.min(dim=0) | |
# Reweight the loss of each (anchor, label) pair, so that only those | |
# at the best gt level are back-propagated. | |
losses_cls, losses_bbox, pos_inds = multi_apply( | |
self.reweight_loss_single, | |
losses_cls, | |
losses_bbox, | |
pos_assigned_gt_inds_list, | |
labels_list, | |
list(range(len(losses_cls))), | |
min_levels=argmin) | |
num_pos = torch.cat(pos_inds, 0).sum().float() | |
pos_recall = self.calculate_pos_recall(cls_scores, labels_list, | |
pos_inds) | |
if num_pos == 0: # No gt | |
avg_factor = num_pos + float(num_total_neg) | |
else: | |
avg_factor = num_pos | |
for i in range(len(losses_cls)): | |
losses_cls[i] /= avg_factor | |
losses_bbox[i] /= avg_factor | |
return dict( | |
loss_cls=losses_cls, | |
loss_bbox=losses_bbox, | |
num_pos=num_pos / batch_size, | |
pos_recall=pos_recall) | |
def calculate_pos_recall(self, cls_scores, labels_list, pos_inds): | |
"""Calculate positive recall with score threshold. | |
Args: | |
cls_scores (list[Tensor]): Classification scores at all fpn levels. | |
Each tensor is in shape (N, num_classes * num_anchors, H, W) | |
labels_list (list[Tensor]): The label that each anchor is assigned | |
to. Shape (N * H * W * num_anchors, ) | |
pos_inds (list[Tensor]): List of bool tensors indicating whether | |
the anchor is assigned to a positive label. | |
Shape (N * H * W * num_anchors, ) | |
Returns: | |
Tensor: A single float number indicating the positive recall. | |
""" | |
with torch.no_grad(): | |
num_class = self.num_classes | |
scores = [ | |
cls.permute(0, 2, 3, 1).reshape(-1, num_class)[pos] | |
for cls, pos in zip(cls_scores, pos_inds) | |
] | |
labels = [ | |
label.reshape(-1)[pos] | |
for label, pos in zip(labels_list, pos_inds) | |
] | |
scores = torch.cat(scores, dim=0) | |
labels = torch.cat(labels, dim=0) | |
if self.use_sigmoid_cls: | |
scores = scores.sigmoid() | |
else: | |
scores = scores.softmax(dim=1) | |
return accuracy(scores, labels, thresh=self.score_threshold) | |
def collect_loss_level_single(self, cls_loss, reg_loss, assigned_gt_inds, | |
labels_seq): | |
"""Get the average loss in each FPN level w.r.t. each gt label. | |
Args: | |
cls_loss (Tensor): Classification loss of each feature map pixel, | |
shape (num_anchor, num_class) | |
reg_loss (Tensor): Regression loss of each feature map pixel, | |
shape (num_anchor, 4) | |
assigned_gt_inds (Tensor): It indicates which gt the prior is | |
assigned to (0-based, -1: no assignment). shape (num_anchor), | |
labels_seq: The rank of labels. shape (num_gt) | |
Returns: | |
shape: (num_gt), average loss of each gt in this level | |
""" | |
if len(reg_loss.shape) == 2: # iou loss has shape (num_prior, 4) | |
reg_loss = reg_loss.sum(dim=-1) # sum loss in tblr dims | |
if len(cls_loss.shape) == 2: | |
cls_loss = cls_loss.sum(dim=-1) # sum loss in class dims | |
loss = cls_loss + reg_loss | |
assert loss.size(0) == assigned_gt_inds.size(0) | |
# Default loss value is 1e6 for a layer where no anchor is positive | |
# to ensure it will not be chosen to back-propagate gradient | |
losses_ = loss.new_full(labels_seq.shape, 1e6) | |
for i, l in enumerate(labels_seq): | |
match = assigned_gt_inds == l | |
if match.any(): | |
losses_[i] = loss[match].mean() | |
return losses_, | |
def reweight_loss_single(self, cls_loss, reg_loss, assigned_gt_inds, | |
labels, level, min_levels): | |
"""Reweight loss values at each level. | |
Reassign loss values at each level by masking those where the | |
pre-calculated loss is too large. Then return the reduced losses. | |
Args: | |
cls_loss (Tensor): Element-wise classification loss. | |
Shape: (num_anchors, num_classes) | |
reg_loss (Tensor): Element-wise regression loss. | |
Shape: (num_anchors, 4) | |
assigned_gt_inds (Tensor): The gt indices that each anchor bbox | |
is assigned to. -1 denotes a negative anchor, otherwise it is the | |
gt index (0-based). Shape: (num_anchors, ), | |
labels (Tensor): Label assigned to anchors. Shape: (num_anchors, ). | |
level (int): The current level index in the pyramid | |
(0-4 for RetinaNet) | |
min_levels (Tensor): The best-matching level for each gt. | |
Shape: (num_gts, ), | |
Returns: | |
tuple: | |
- cls_loss: Reduced corrected classification loss. Scalar. | |
- reg_loss: Reduced corrected regression loss. Scalar. | |
- pos_flags (Tensor): Corrected bool tensor indicating the | |
final positive anchors. Shape: (num_anchors, ). | |
""" | |
loc_weight = torch.ones_like(reg_loss) | |
cls_weight = torch.ones_like(cls_loss) | |
pos_flags = assigned_gt_inds >= 0 # positive pixel flag | |
pos_indices = torch.nonzero(pos_flags, as_tuple=False).flatten() | |
if pos_flags.any(): # pos pixels exist | |
pos_assigned_gt_inds = assigned_gt_inds[pos_flags] | |
zeroing_indices = (min_levels[pos_assigned_gt_inds] != level) | |
neg_indices = pos_indices[zeroing_indices] | |
if neg_indices.numel(): | |
pos_flags[neg_indices] = 0 | |
loc_weight[neg_indices] = 0 | |
# Only the weight corresponding to the label is | |
# zeroed out if not selected | |
zeroing_labels = labels[neg_indices] | |
assert (zeroing_labels >= 0).all() | |
cls_weight[neg_indices, zeroing_labels] = 0 | |
# Weighted loss for both cls and reg loss | |
cls_loss = weight_reduce_loss(cls_loss, cls_weight, reduction='sum') | |
reg_loss = weight_reduce_loss(reg_loss, loc_weight, reduction='sum') | |
return cls_loss, reg_loss, pos_flags | |