Spaces:
Build error
Build error
import argparse | |
import torch | |
from mmcv import Config, DictAction | |
from mmdet.models import build_detector | |
try: | |
from mmcv.cnn import get_model_complexity_info | |
except ImportError: | |
raise ImportError('Please upgrade mmcv to >0.6.2') | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Train a detector') | |
parser.add_argument('config', help='train config file path') | |
parser.add_argument( | |
'--shape', | |
type=int, | |
nargs='+', | |
default=[1280, 800], | |
help='input image size') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
if len(args.shape) == 1: | |
input_shape = (3, args.shape[0], args.shape[0]) | |
elif len(args.shape) == 2: | |
input_shape = (3, ) + tuple(args.shape) | |
else: | |
raise ValueError('invalid input shape') | |
cfg = Config.fromfile(args.config) | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
# import modules from string list. | |
if cfg.get('custom_imports', None): | |
from mmcv.utils import import_modules_from_strings | |
import_modules_from_strings(**cfg['custom_imports']) | |
model = build_detector( | |
cfg.model, | |
train_cfg=cfg.get('train_cfg'), | |
test_cfg=cfg.get('test_cfg')) | |
if torch.cuda.is_available(): | |
model.cuda() | |
model.eval() | |
if hasattr(model, 'forward_dummy'): | |
model.forward = model.forward_dummy | |
else: | |
raise NotImplementedError( | |
'FLOPs counter is currently not currently supported with {}'. | |
format(model.__class__.__name__)) | |
flops, params = get_model_complexity_info(model, input_shape) | |
split_line = '=' * 30 | |
print(f'{split_line}\nInput shape: {input_shape}\n' | |
f'Flops: {flops}\nParams: {params}\n{split_line}') | |
print('!!!Please be cautious if you use the results in papers. ' | |
'You may need to check if all ops are supported and verify that the ' | |
'flops computation is correct.') | |
if __name__ == '__main__': | |
main() | |