Spaces:
Runtime error
Runtime error
debug
Browse files
app.py
CHANGED
@@ -1,24 +1,21 @@
|
|
1 |
import os
|
2 |
import json
|
3 |
-
from typing import List
|
4 |
|
5 |
import torch
|
6 |
import torch.nn.functional as F
|
7 |
import torchvision.transforms as T
|
8 |
-
from
|
9 |
-
from torchvision.transforms._transforms_video import NormalizeVideo
|
10 |
-
from uniformer import uniformer_small, uniformer_base, uniformer_small_plus, uniformer_base_ls
|
11 |
|
12 |
import gradio as gr
|
13 |
|
14 |
# Device on which to run the model
|
15 |
# Set to cuda to load on GPU
|
16 |
device = "cpu"
|
17 |
-
os.system("https://huggingface.co/Andy1621/uniformer/blob/main/uniformer_small_in1k.pth")
|
18 |
# Pick a pretrained model
|
19 |
model = uniformer_small()
|
20 |
state_dict = torch.load('uniformer_small_in1k.pth', map_location='cpu')
|
21 |
-
model.load_state_dict(state_dict)
|
22 |
|
23 |
# Set to eval mode and move to desired device
|
24 |
model = model.to(device)
|
@@ -56,6 +53,7 @@ def inference(img):
|
|
56 |
pred_classes = prediction.topk(k=5).indices
|
57 |
|
58 |
pred_class_names = [imagenet_id_to_classname[str(i.item())] for i in pred_classes[0]]
|
|
|
59 |
return "Top 5 predicted labels: %s" % ", ".join(pred_class_names)
|
60 |
|
61 |
inputs = gr.inputs.Image(type='pil')
|
|
|
1 |
import os
|
2 |
import json
|
|
|
3 |
|
4 |
import torch
|
5 |
import torch.nn.functional as F
|
6 |
import torchvision.transforms as T
|
7 |
+
from uniformer import uniformer_small
|
|
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
|
11 |
# Device on which to run the model
|
12 |
# Set to cuda to load on GPU
|
13 |
device = "cpu"
|
14 |
+
os.system("wget https://huggingface.co/Andy1621/uniformer/blob/main/uniformer_small_in1k.pth")
|
15 |
# Pick a pretrained model
|
16 |
model = uniformer_small()
|
17 |
state_dict = torch.load('uniformer_small_in1k.pth', map_location='cpu')
|
18 |
+
model.load_state_dict(state_dict['model'])
|
19 |
|
20 |
# Set to eval mode and move to desired device
|
21 |
model = model.to(device)
|
|
|
53 |
pred_classes = prediction.topk(k=5).indices
|
54 |
|
55 |
pred_class_names = [imagenet_id_to_classname[str(i.item())] for i in pred_classes[0]]
|
56 |
+
pred_class_probs = []
|
57 |
return "Top 5 predicted labels: %s" % ", ".join(pred_class_names)
|
58 |
|
59 |
inputs = gr.inputs.Image(type='pil')
|