Andy1621 commited on
Commit
a29447f
1 Parent(s): e98dbd2
Files changed (1) hide show
  1. app.py +4 -6
app.py CHANGED
@@ -1,24 +1,21 @@
1
  import os
2
  import json
3
- from typing import List
4
 
5
  import torch
6
  import torch.nn.functional as F
7
  import torchvision.transforms as T
8
- from PIL import Image
9
- from torchvision.transforms._transforms_video import NormalizeVideo
10
- from uniformer import uniformer_small, uniformer_base, uniformer_small_plus, uniformer_base_ls
11
 
12
  import gradio as gr
13
 
14
  # Device on which to run the model
15
  # Set to cuda to load on GPU
16
  device = "cpu"
17
- os.system("https://huggingface.co/Andy1621/uniformer/blob/main/uniformer_small_in1k.pth")
18
  # Pick a pretrained model
19
  model = uniformer_small()
20
  state_dict = torch.load('uniformer_small_in1k.pth', map_location='cpu')
21
- model.load_state_dict(state_dict)
22
 
23
  # Set to eval mode and move to desired device
24
  model = model.to(device)
@@ -56,6 +53,7 @@ def inference(img):
56
  pred_classes = prediction.topk(k=5).indices
57
 
58
  pred_class_names = [imagenet_id_to_classname[str(i.item())] for i in pred_classes[0]]
 
59
  return "Top 5 predicted labels: %s" % ", ".join(pred_class_names)
60
 
61
  inputs = gr.inputs.Image(type='pil')
 
1
  import os
2
  import json
 
3
 
4
  import torch
5
  import torch.nn.functional as F
6
  import torchvision.transforms as T
7
+ from uniformer import uniformer_small
 
 
8
 
9
  import gradio as gr
10
 
11
  # Device on which to run the model
12
  # Set to cuda to load on GPU
13
  device = "cpu"
14
+ os.system("wget https://huggingface.co/Andy1621/uniformer/blob/main/uniformer_small_in1k.pth")
15
  # Pick a pretrained model
16
  model = uniformer_small()
17
  state_dict = torch.load('uniformer_small_in1k.pth', map_location='cpu')
18
+ model.load_state_dict(state_dict['model'])
19
 
20
  # Set to eval mode and move to desired device
21
  model = model.to(device)
 
53
  pred_classes = prediction.topk(k=5).indices
54
 
55
  pred_class_names = [imagenet_id_to_classname[str(i.item())] for i in pred_classes[0]]
56
+ pred_class_probs = []
57
  return "Top 5 predicted labels: %s" % ", ".join(pred_class_names)
58
 
59
  inputs = gr.inputs.Image(type='pil')