Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
from diffusers import ( | |
KandinskyV22CombinedPipeline, | |
KandinskyV22Img2ImgCombinedPipeline, | |
KandinskyV22InpaintCombinedPipeline, | |
) | |
from diffusers.utils import torch_device | |
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu | |
from ..test_pipelines_common import PipelineTesterMixin | |
from .test_kandinsky import Dummies | |
from .test_kandinsky_img2img import Dummies as Img2ImgDummies | |
from .test_kandinsky_inpaint import Dummies as InpaintDummies | |
from .test_kandinsky_prior import Dummies as PriorDummies | |
enable_full_determinism() | |
class KandinskyV22PipelineCombinedFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = KandinskyV22CombinedPipeline | |
params = [ | |
"prompt", | |
] | |
batch_params = ["prompt", "negative_prompt"] | |
required_optional_params = [ | |
"generator", | |
"height", | |
"width", | |
"latents", | |
"guidance_scale", | |
"negative_prompt", | |
"num_inference_steps", | |
"return_dict", | |
"guidance_scale", | |
"num_images_per_prompt", | |
"output_type", | |
"return_dict", | |
] | |
test_xformers_attention = False | |
def get_dummy_components(self): | |
dummy = Dummies() | |
prior_dummy = PriorDummies() | |
components = dummy.get_dummy_components() | |
components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
prior_dummy = PriorDummies() | |
inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) | |
inputs.update( | |
{ | |
"height": 64, | |
"width": 64, | |
} | |
) | |
return inputs | |
def test_kandinsky(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
output = pipe(**self.get_dummy_inputs(device)) | |
image = output.images | |
image_from_tuple = pipe( | |
**self.get_dummy_inputs(device), | |
return_dict=False, | |
)[0] | |
image_slice = image[0, -3:, -3:, -1] | |
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.3013, 0.0471, 0.5176, 0.1817, 0.2566, 0.7076, 0.6712, 0.4421, 0.7503]) | |
assert ( | |
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" | |
assert ( | |
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" | |
def test_offloads(self): | |
pipes = [] | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components).to(torch_device) | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe.enable_model_cpu_offload() | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe.enable_sequential_cpu_offload() | |
pipes.append(sd_pipe) | |
image_slices = [] | |
for pipe in pipes: | |
inputs = self.get_dummy_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=1e-2) | |
class KandinskyV22PipelineImg2ImgCombinedFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = KandinskyV22Img2ImgCombinedPipeline | |
params = ["prompt", "image"] | |
batch_params = ["prompt", "negative_prompt", "image"] | |
required_optional_params = [ | |
"generator", | |
"height", | |
"width", | |
"latents", | |
"guidance_scale", | |
"negative_prompt", | |
"num_inference_steps", | |
"return_dict", | |
"guidance_scale", | |
"num_images_per_prompt", | |
"output_type", | |
"return_dict", | |
] | |
test_xformers_attention = False | |
def get_dummy_components(self): | |
dummy = Img2ImgDummies() | |
prior_dummy = PriorDummies() | |
components = dummy.get_dummy_components() | |
components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
prior_dummy = PriorDummies() | |
dummy = Img2ImgDummies() | |
inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) | |
inputs.update(dummy.get_dummy_inputs(device=device, seed=seed)) | |
inputs.pop("image_embeds") | |
inputs.pop("negative_image_embeds") | |
return inputs | |
def test_kandinsky(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
output = pipe(**self.get_dummy_inputs(device)) | |
image = output.images | |
image_from_tuple = pipe( | |
**self.get_dummy_inputs(device), | |
return_dict=False, | |
)[0] | |
image_slice = image[0, -3:, -3:, -1] | |
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.4353, 0.4710, 0.5128, 0.4806, 0.5054, 0.5348, 0.5224, 0.4603, 0.5025]) | |
assert ( | |
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" | |
assert ( | |
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" | |
def test_offloads(self): | |
pipes = [] | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components).to(torch_device) | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe.enable_model_cpu_offload() | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe.enable_sequential_cpu_offload() | |
pipes.append(sd_pipe) | |
image_slices = [] | |
for pipe in pipes: | |
inputs = self.get_dummy_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=1e-2) | |
class KandinskyV22PipelineInpaintCombinedFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = KandinskyV22InpaintCombinedPipeline | |
params = ["prompt", "image", "mask_image"] | |
batch_params = ["prompt", "negative_prompt", "image", "mask_image"] | |
required_optional_params = [ | |
"generator", | |
"height", | |
"width", | |
"latents", | |
"guidance_scale", | |
"negative_prompt", | |
"num_inference_steps", | |
"return_dict", | |
"guidance_scale", | |
"num_images_per_prompt", | |
"output_type", | |
"return_dict", | |
] | |
test_xformers_attention = False | |
def get_dummy_components(self): | |
dummy = InpaintDummies() | |
prior_dummy = PriorDummies() | |
components = dummy.get_dummy_components() | |
components.update({f"prior_{k}": v for k, v in prior_dummy.get_dummy_components().items()}) | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
prior_dummy = PriorDummies() | |
dummy = InpaintDummies() | |
inputs = prior_dummy.get_dummy_inputs(device=device, seed=seed) | |
inputs.update(dummy.get_dummy_inputs(device=device, seed=seed)) | |
inputs.pop("image_embeds") | |
inputs.pop("negative_image_embeds") | |
return inputs | |
def test_kandinsky(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
output = pipe(**self.get_dummy_inputs(device)) | |
image = output.images | |
image_from_tuple = pipe( | |
**self.get_dummy_inputs(device), | |
return_dict=False, | |
)[0] | |
image_slice = image[0, -3:, -3:, -1] | |
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.5039, 0.4926, 0.4898, 0.4978, 0.4838, 0.4942, 0.4738, 0.4702, 0.4816]) | |
assert ( | |
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" | |
assert ( | |
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" | |
def test_offloads(self): | |
pipes = [] | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components).to(torch_device) | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe.enable_model_cpu_offload() | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe.enable_sequential_cpu_offload() | |
pipes.append(sd_pipe) | |
image_slices = [] | |
for pipe in pipes: | |
inputs = self.get_dummy_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=1e-2) | |