Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Commit 
							
							·
						
						117eca9
	
1
								Parent(s):
							
							acd1802
								
Adding fastrtc
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -8,7 +8,6 @@ import os 
     | 
|
| 8 | 
         
             
            import urllib.request
         
     | 
| 9 | 
         
             
            import torchaudio
         
     | 
| 10 | 
         
             
            from scipy.spatial.distance import cosine
         
     | 
| 11 | 
         
            -
            from RealtimeSTT import AudioToTextRecorder
         
     | 
| 12 | 
         
             
            import json
         
     | 
| 13 | 
         
             
            import io
         
     | 
| 14 | 
         
             
            import wave
         
     | 
| 
         @@ -126,14 +125,13 @@ class AudioProcessor: 
     | 
|
| 126 | 
         
             
                def __init__(self, encoder):
         
     | 
| 127 | 
         
             
                    self.encoder = encoder
         
     | 
| 128 | 
         | 
| 129 | 
         
            -
                def extract_embedding(self,  
     | 
| 130 | 
         
             
                    try:
         
     | 
| 131 | 
         
            -
                         
     | 
| 
         | 
|
| 
         | 
|
| 132 | 
         | 
| 133 | 
         
            -
                         
     | 
| 134 | 
         
            -
                            float_audio = float_audio / np.abs(float_audio).max()
         
     | 
| 135 | 
         
            -
                        
         
     | 
| 136 | 
         
            -
                        embedding = self.encoder.embed_utterance(float_audio)
         
     | 
| 137 | 
         | 
| 138 | 
         
             
                        return embedding
         
     | 
| 139 | 
         
             
                    except Exception as e:
         
     | 
| 
         @@ -271,52 +269,58 @@ class SpeakerChangeDetector: 
     | 
|
| 271 | 
         
             
                    }
         
     | 
| 272 | 
         | 
| 273 | 
         | 
| 274 | 
         
            -
            class  
     | 
| 275 | 
         
            -
                """ 
     | 
| 276 | 
         
            -
                def __init__(self,  
     | 
| 277 | 
         
            -
                    self. 
     | 
| 278 | 
         
            -
                    self. 
     | 
| 279 | 
         
            -
                    self. 
     | 
| 280 | 
         
            -
                    self. 
     | 
| 281 | 
         
            -
                    self.is_processing = False
         
     | 
| 282 | 
         | 
| 283 | 
         
            -
                def  
     | 
| 284 | 
         
            -
                    """ 
     | 
| 285 | 
         
             
                    try:
         
     | 
| 286 | 
         
            -
                         
     | 
| 287 | 
         
            -
                        if isinstance(audio_data, bytes):
         
     | 
| 288 | 
         
            -
                            audio_array = np.frombuffer(audio_data, dtype=np.int16)
         
     | 
| 289 | 
         
            -
                        elif isinstance(audio_data, tuple):
         
     | 
| 290 | 
         
            -
                            # Handle tuple format (sample_rate, audio_array)
         
     | 
| 291 | 
         
            -
                            sample_rate, audio_array = audio_data
         
     | 
| 292 | 
         
            -
                            if isinstance(audio_array, np.ndarray):
         
     | 
| 293 | 
         
            -
                                if audio_array.dtype != np.int16:
         
     | 
| 294 | 
         
            -
                                    audio_array = (audio_array * 32767).astype(np.int16)
         
     | 
| 295 | 
         
            -
                            else:
         
     | 
| 296 | 
         
            -
                                audio_array = np.array(audio_array, dtype=np.int16)
         
     | 
| 297 | 
         
            -
                        else:
         
     | 
| 298 | 
         
            -
                            audio_array = np.array(audio_data, dtype=np.int16)
         
     | 
| 299 | 
         | 
| 300 | 
         
            -
                         
     | 
| 301 | 
         
            -
                         
     | 
| 302 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 303 | 
         | 
| 304 | 
         
            -
                        # Add to buffer
         
     | 
| 305 | 
         
            -
                        with self.buffer_lock:
         
     | 
| 306 | 
         
            -
                            self.audio_buffer.extend(audio_array)
         
     | 
| 307 | 
         
            -
                            
         
     | 
| 308 | 
         
            -
                            # Process buffer when it's large enough (1 second of audio)
         
     | 
| 309 | 
         
            -
                            if len(self.audio_buffer) >= sample_rate:
         
     | 
| 310 | 
         
            -
                                buffer_to_process = np.array(self.audio_buffer[:sample_rate])
         
     | 
| 311 | 
         
            -
                                self.audio_buffer = self.audio_buffer[sample_rate//2:]  # Keep 50% overlap
         
     | 
| 312 | 
         
            -
                                
         
     | 
| 313 | 
         
            -
                                # Feed to recorder in separate thread
         
     | 
| 314 | 
         
            -
                                if self.diarization_system.recorder:
         
     | 
| 315 | 
         
            -
                                    audio_bytes = buffer_to_process.tobytes()
         
     | 
| 316 | 
         
            -
                                    self.diarization_system.recorder.feed_audio(audio_bytes)
         
     | 
| 317 | 
         
            -
                                    
         
     | 
| 318 | 
         
             
                    except Exception as e:
         
     | 
| 319 | 
         
            -
                        print(f" 
     | 
| 
         | 
|
| 320 | 
         | 
| 321 | 
         | 
| 322 | 
         
             
            class RealtimeSpeakerDiarization:
         
     | 
| 
         @@ -324,86 +328,112 @@ class RealtimeSpeakerDiarization: 
     | 
|
| 324 | 
         
             
                    self.encoder = None
         
     | 
| 325 | 
         
             
                    self.audio_processor = None
         
     | 
| 326 | 
         
             
                    self.speaker_detector = None
         
     | 
| 327 | 
         
            -
                    self. 
     | 
| 328 | 
         
            -
                    self. 
     | 
| 
         | 
|
| 329 | 
         
             
                    self.sentence_queue = queue.Queue()
         
     | 
| 330 | 
         
             
                    self.full_sentences = []
         
     | 
| 331 | 
         
             
                    self.sentence_speakers = []
         
     | 
| 332 | 
         
             
                    self.pending_sentences = []
         
     | 
| 333 | 
         
             
                    self.displayed_text = ""
         
     | 
| 334 | 
         
            -
                    self.last_realtime_text = ""
         
     | 
| 335 | 
         
             
                    self.is_running = False
         
     | 
| 336 | 
         
             
                    self.change_threshold = DEFAULT_CHANGE_THRESHOLD
         
     | 
| 337 | 
         
             
                    self.max_speakers = DEFAULT_MAX_SPEAKERS
         
     | 
| 
         | 
|
| 
         | 
|
| 338 | 
         | 
| 339 | 
         
             
                def initialize_models(self):
         
     | 
| 340 | 
         
            -
                    """Initialize the speaker encoder  
     | 
| 341 | 
         
             
                    try:
         
     | 
| 342 | 
         
             
                        device_str = "cuda" if torch.cuda.is_available() else "cpu"
         
     | 
| 343 | 
         
             
                        print(f"Using device: {device_str}")
         
     | 
| 344 | 
         | 
| 
         | 
|
| 345 | 
         
             
                        self.encoder = SpeechBrainEncoder(device=device_str)
         
     | 
| 346 | 
         
            -
                         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 347 | 
         | 
| 348 | 
         
            -
                        if  
     | 
| 349 | 
         
             
                            self.audio_processor = AudioProcessor(self.encoder)
         
     | 
| 350 | 
         
             
                            self.speaker_detector = SpeakerChangeDetector(
         
     | 
| 351 | 
         
             
                                embedding_dim=self.encoder.embedding_dim,
         
     | 
| 352 | 
         
             
                                change_threshold=self.change_threshold,
         
     | 
| 353 | 
         
             
                                max_speakers=self.max_speakers
         
     | 
| 354 | 
         
             
                            )
         
     | 
| 355 | 
         
            -
                             
     | 
| 356 | 
         
            -
                            print("ECAPA-TDNN model loaded successfully!")
         
     | 
| 357 | 
         
             
                            return True
         
     | 
| 358 | 
         
             
                        else:
         
     | 
| 359 | 
         
            -
                            print("Failed to load  
     | 
| 360 | 
         
             
                            return False
         
     | 
| 361 | 
         
             
                    except Exception as e:
         
     | 
| 362 | 
         
             
                        print(f"Model initialization error: {e}")
         
     | 
| 363 | 
         
             
                        return False
         
     | 
| 364 | 
         | 
| 365 | 
         
            -
                def  
     | 
| 366 | 
         
            -
                    """ 
     | 
| 367 | 
         
            -
                     
     | 
| 368 | 
         
            -
             
     | 
| 369 | 
         
            -
             
     | 
| 370 | 
         
            -
             
     | 
| 371 | 
         
            -
             
     | 
| 372 | 
         
            -
             
     | 
| 373 | 
         
            -
                             
     | 
| 374 | 
         
            -
                        )
         
     | 
| 375 | 
         
            -
             
     | 
| 376 | 
         
            -
                        self.last_realtime_text = text
         
     | 
| 377 | 
         
            -
             
     | 
| 378 | 
         
            -
                        if prob_sentence_end and FAST_SENTENCE_END:
         
     | 
| 379 | 
         
            -
                            self.recorder.stop()
         
     | 
| 380 | 
         
            -
                        elif prob_sentence_end:
         
     | 
| 381 | 
         
            -
                            self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
         
     | 
| 382 | 
         
             
                        else:
         
     | 
| 383 | 
         
            -
                             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 384 | 
         | 
| 385 | 
         
            -
                def  
     | 
| 386 | 
         
            -
                    """Process  
     | 
| 387 | 
         
            -
                     
     | 
| 388 | 
         
            -
             
     | 
| 389 | 
         
            -
             
     | 
| 390 | 
         
            -
             
     | 
| 391 | 
         
            -
             
     | 
| 392 | 
         
            -
             
     | 
| 393 | 
         
            -
                         
     | 
| 394 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 395 | 
         | 
| 396 | 
         
             
                def process_sentence_queue(self):
         
     | 
| 397 | 
         
             
                    """Process sentences in the queue for speaker detection"""
         
     | 
| 398 | 
         
             
                    while self.is_running:
         
     | 
| 399 | 
         
             
                        try:
         
     | 
| 400 | 
         
            -
                            text,  
     | 
| 401 | 
         
            -
                            
         
     | 
| 402 | 
         
            -
                            # Convert audio data to int16
         
     | 
| 403 | 
         
            -
                            audio_int16 = np.int16(bytes_data * 32767)
         
     | 
| 404 | 
         
            -
                            
         
     | 
| 405 | 
         
            -
                            # Extract speaker embedding
         
     | 
| 406 | 
         
            -
                            speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
         
     | 
| 407 | 
         | 
| 408 | 
         
             
                            # Store sentence and embedding
         
     | 
| 409 | 
         
             
                            self.full_sentences.append((text, speaker_embedding))
         
     | 
| 
         @@ -416,10 +446,6 @@ class RealtimeSpeakerDiarization: 
     | 
|
| 416 | 
         
             
                            speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
         
     | 
| 417 | 
         
             
                            self.sentence_speakers.append(speaker_id)
         
     | 
| 418 | 
         | 
| 419 | 
         
            -
                            # Remove from pending
         
     | 
| 420 | 
         
            -
                            if text in self.pending_sentences:
         
     | 
| 421 | 
         
            -
                                self.pending_sentences.remove(text)
         
     | 
| 422 | 
         
            -
                                
         
     | 
| 423 | 
         
             
                        except queue.Empty:
         
     | 
| 424 | 
         
             
                            continue
         
     | 
| 425 | 
         
             
                        except Exception as e:
         
     | 
| 
         @@ -431,57 +457,20 @@ class RealtimeSpeakerDiarization: 
     | 
|
| 431 | 
         
             
                        return "Please initialize models first!"
         
     | 
| 432 | 
         | 
| 433 | 
         
             
                    try:
         
     | 
| 434 | 
         
            -
                        # Setup recorder configuration for WebRTC input
         
     | 
| 435 | 
         
            -
                        recorder_config = {
         
     | 
| 436 | 
         
            -
                            'spinner': False,
         
     | 
| 437 | 
         
            -
                            'use_microphone': False,  # We'll feed audio manually
         
     | 
| 438 | 
         
            -
                            'model': FINAL_TRANSCRIPTION_MODEL,
         
     | 
| 439 | 
         
            -
                            'language': TRANSCRIPTION_LANGUAGE,
         
     | 
| 440 | 
         
            -
                            'silero_sensitivity': SILERO_SENSITIVITY,
         
     | 
| 441 | 
         
            -
                            'webrtc_sensitivity': WEBRTC_SENSITIVITY,
         
     | 
| 442 | 
         
            -
                            'post_speech_silence_duration': SILENCE_THRESHS[1],
         
     | 
| 443 | 
         
            -
                            'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
         
     | 
| 444 | 
         
            -
                            'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
         
     | 
| 445 | 
         
            -
                            'min_gap_between_recordings': 0,
         
     | 
| 446 | 
         
            -
                            'enable_realtime_transcription': True,
         
     | 
| 447 | 
         
            -
                            'realtime_processing_pause': 0,
         
     | 
| 448 | 
         
            -
                            'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
         
     | 
| 449 | 
         
            -
                            'on_realtime_transcription_update': self.live_text_detected,
         
     | 
| 450 | 
         
            -
                            'beam_size': FINAL_BEAM_SIZE,
         
     | 
| 451 | 
         
            -
                            'beam_size_realtime': REALTIME_BEAM_SIZE,
         
     | 
| 452 | 
         
            -
                            'buffer_size': BUFFER_SIZE,
         
     | 
| 453 | 
         
            -
                            'sample_rate': SAMPLE_RATE,
         
     | 
| 454 | 
         
            -
                        }
         
     | 
| 455 | 
         
            -
             
     | 
| 456 | 
         
            -
                        self.recorder = AudioToTextRecorder(**recorder_config)
         
     | 
| 457 | 
         
            -
                        
         
     | 
| 458 | 
         
             
                        # Start sentence processing thread
         
     | 
| 459 | 
         
             
                        self.is_running = True
         
     | 
| 460 | 
         
            -
                        self. 
     | 
| 461 | 
         
            -
                        self. 
     | 
| 462 | 
         
            -
                        
         
     | 
| 463 | 
         
            -
                        # Start transcription thread
         
     | 
| 464 | 
         
            -
                        self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
         
     | 
| 465 | 
         
            -
                        self.transcription_thread.start()
         
     | 
| 466 | 
         | 
| 467 | 
         
            -
                        return "Recording started successfully!  
     | 
| 468 | 
         | 
| 469 | 
         
             
                    except Exception as e:
         
     | 
| 470 | 
         
             
                        return f"Error starting recording: {e}"
         
     | 
| 471 | 
         | 
| 472 | 
         
            -
                def run_transcription(self):
         
     | 
| 473 | 
         
            -
                    """Run the transcription loop"""
         
     | 
| 474 | 
         
            -
                    try:
         
     | 
| 475 | 
         
            -
                        while self.is_running:
         
     | 
| 476 | 
         
            -
                            self.recorder.text(self.process_final_text)
         
     | 
| 477 | 
         
            -
                    except Exception as e:
         
     | 
| 478 | 
         
            -
                        print(f"Transcription error: {e}")
         
     | 
| 479 | 
         
            -
                
         
     | 
| 480 | 
         
             
                def stop_recording(self):
         
     | 
| 481 | 
         
             
                    """Stop the recording process"""
         
     | 
| 482 | 
         
             
                    self.is_running = False
         
     | 
| 483 | 
         
            -
                     
     | 
| 484 | 
         
            -
                        self.recorder.stop()
         
     | 
| 485 | 
         
             
                    return "Recording stopped!"
         
     | 
| 486 | 
         | 
| 487 | 
         
             
                def clear_conversation(self):
         
     | 
| 
         @@ -490,7 +479,7 @@ class RealtimeSpeakerDiarization: 
     | 
|
| 490 | 
         
             
                    self.sentence_speakers = []
         
     | 
| 491 | 
         
             
                    self.pending_sentences = []
         
     | 
| 492 | 
         
             
                    self.displayed_text = ""
         
     | 
| 493 | 
         
            -
                    self. 
     | 
| 494 | 
         | 
| 495 | 
         
             
                    if self.speaker_detector:
         
     | 
| 496 | 
         
             
                        self.speaker_detector = SpeakerChangeDetector(
         
     | 
| 
         @@ -522,6 +511,7 @@ class RealtimeSpeakerDiarization: 
     | 
|
| 522 | 
         
             
                            sentence_text, _ = sentence
         
     | 
| 523 | 
         
             
                            if i >= len(self.sentence_speakers):
         
     | 
| 524 | 
         
             
                                color = "#FFFFFF"
         
     | 
| 
         | 
|
| 525 | 
         
             
                            else:
         
     | 
| 526 | 
         
             
                                speaker_id = self.sentence_speakers[i]
         
     | 
| 527 | 
         
             
                                color = self.speaker_detector.get_color_for_speaker(speaker_id)
         
     | 
| 
         @@ -530,11 +520,6 @@ class RealtimeSpeakerDiarization: 
     | 
|
| 530 | 
         
             
                            sentences_with_style.append(
         
     | 
| 531 | 
         
             
                                f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
         
     | 
| 532 | 
         | 
| 533 | 
         
            -
                        # Add pending sentences
         
     | 
| 534 | 
         
            -
                        for pending_sentence in self.pending_sentences:
         
     | 
| 535 | 
         
            -
                            sentences_with_style.append(
         
     | 
| 536 | 
         
            -
                                f'<span style="color:#60FFFF;"><b>Processing:</b> {pending_sentence}</span>')
         
     | 
| 537 | 
         
            -
                        
         
     | 
| 538 | 
         
             
                        if sentences_with_style:
         
     | 
| 539 | 
         
             
                            return "<br><br>".join(sentences_with_style)
         
     | 
| 540 | 
         
             
                        else:
         
     | 
| 
         @@ -557,6 +542,7 @@ class RealtimeSpeakerDiarization: 
     | 
|
| 557 | 
         
             
                            f"**Last Similarity:** {status['last_similarity']:.3f}",
         
     | 
| 558 | 
         
             
                            f"**Change Threshold:** {status['threshold']:.2f}",
         
     | 
| 559 | 
         
             
                            f"**Total Sentences:** {len(self.full_sentences)}",
         
     | 
| 
         | 
|
| 560 | 
         
             
                            "",
         
     | 
| 561 | 
         
             
                            "**Speaker Segment Counts:**"
         
     | 
| 562 | 
         
             
                        ]
         
     | 
| 
         @@ -614,27 +600,28 @@ def get_status(): 
     | 
|
| 614 | 
         
             
                return diarization_system.get_status_info()
         
     | 
| 615 | 
         | 
| 616 | 
         | 
| 617 | 
         
            -
            def  
     | 
| 618 | 
         
            -
                """Process audio  
     | 
| 619 | 
         
            -
                if  
     | 
| 620 | 
         
            -
                     
     | 
| 621 | 
         
            -
             
     | 
| 
         | 
|
| 622 | 
         | 
| 623 | 
         | 
| 624 | 
         
             
            # Create Gradio interface
         
     | 
| 625 | 
         
             
            def create_interface():
         
     | 
| 626 | 
         
            -
                with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes. 
     | 
| 627 | 
         
             
                    gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
         
     | 
| 628 | 
         
            -
                    gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding using  
     | 
| 629 | 
         | 
| 630 | 
         
             
                    with gr.Row():
         
     | 
| 631 | 
         
             
                        with gr.Column(scale=2):
         
     | 
| 632 | 
         
            -
                            #  
     | 
| 633 | 
         
             
                            audio_input = gr.Audio(
         
     | 
| 634 | 
         
            -
                                 
     | 
| 
         | 
|
| 635 | 
         
             
                                streaming=True,
         
     | 
| 636 | 
         
            -
                                label="🎙️ Microphone Input" 
     | 
| 637 | 
         
            -
                                type="numpy"
         
     | 
| 638 | 
         
             
                            )
         
     | 
| 639 | 
         | 
| 640 | 
         
             
                            # Main conversation display
         
     | 
| 
         @@ -654,7 +641,7 @@ def create_interface(): 
     | 
|
| 654 | 
         
             
                            status_output = gr.Textbox(
         
     | 
| 655 | 
         
             
                                label="System Status",
         
     | 
| 656 | 
         
             
                                value="System not initialized",
         
     | 
| 657 | 
         
            -
                                lines= 
     | 
| 658 | 
         
             
                                interactive=False
         
     | 
| 659 | 
         
             
                            )
         
     | 
| 660 | 
         | 
| 
         @@ -681,17 +668,6 @@ def create_interface(): 
     | 
|
| 681 | 
         | 
| 682 | 
         
             
                            update_settings_btn = gr.Button("Update Settings")
         
     | 
| 683 | 
         | 
| 684 | 
         
            -
                            # Instructions
         
     | 
| 685 | 
         
            -
                            gr.Markdown("## 📝 Instructions")
         
     | 
| 686 | 
         
            -
                            gr.Markdown("""
         
     | 
| 687 | 
         
            -
                            1. Click **Initialize System** to load models
         
     | 
| 688 | 
         
            -
                            2. Click **Start Recording** to begin processing
         
     | 
| 689 | 
         
            -
                            3. Allow microphone access when prompted
         
     | 
| 690 | 
         
            -
                            4. Speak into your microphone
         
     | 
| 691 | 
         
            -
                            5. Watch real-time transcription with speaker labels
         
     | 
| 692 | 
         
            -
                            6. Adjust settings as needed
         
     | 
| 693 | 
         
            -
                            """)
         
     | 
| 694 | 
         
            -
                            
         
     | 
| 695 | 
         
             
                            # Speaker color legend
         
     | 
| 696 | 
         
             
                            gr.Markdown("## 🎨 Speaker Colors")
         
     | 
| 697 | 
         
             
                            color_info = []
         
     | 
| 
         @@ -699,10 +675,18 @@ def create_interface(): 
     | 
|
| 699 | 
         
             
                                color_info.append(f'<span style="color:{color};">■</span> Speaker {i+1} ({name})')
         
     | 
| 700 | 
         | 
| 701 | 
         
             
                            gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
         
     | 
| 702 | 
         
            -
             
     | 
| 703 | 
         
            -
             
     | 
| 704 | 
         
            -
             
     | 
| 705 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 706 | 
         | 
| 707 | 
         
             
                    # Event handlers
         
     | 
| 708 | 
         
             
                    def on_initialize():
         
     | 
| 
         @@ -767,17 +751,19 @@ def create_interface(): 
     | 
|
| 767 | 
         
             
                        outputs=[status_output]
         
     | 
| 768 | 
         
             
                    )
         
     | 
| 769 | 
         | 
| 770 | 
         
            -
                    #  
     | 
| 771 | 
         
             
                    audio_input.stream(
         
     | 
| 772 | 
         
            -
                         
     | 
| 773 | 
         
             
                        inputs=[audio_input],
         
     | 
| 774 | 
         
            -
                        outputs=[]
         
     | 
| 
         | 
|
| 
         | 
|
| 775 | 
         
             
                    )
         
     | 
| 776 | 
         | 
| 777 | 
         
            -
                    # Auto-refresh every  
     | 
| 778 | 
         
            -
                    refresh_timer = gr.Timer( 
     | 
| 779 | 
         
             
                    refresh_timer.tick(
         
     | 
| 780 | 
         
            -
                         
     | 
| 781 | 
         
             
                        outputs=[conversation_output, status_output]
         
     | 
| 782 | 
         
             
                    )
         
     | 
| 783 | 
         | 
| 
         | 
|
| 8 | 
         
             
            import urllib.request
         
     | 
| 9 | 
         
             
            import torchaudio
         
     | 
| 10 | 
         
             
            from scipy.spatial.distance import cosine
         
     | 
| 
         | 
|
| 11 | 
         
             
            import json
         
     | 
| 12 | 
         
             
            import io
         
     | 
| 13 | 
         
             
            import wave
         
     | 
| 
         | 
|
| 125 | 
         
             
                def __init__(self, encoder):
         
     | 
| 126 | 
         
             
                    self.encoder = encoder
         
     | 
| 127 | 
         | 
| 128 | 
         
            +
                def extract_embedding(self, audio_float):
         
     | 
| 129 | 
         
             
                    try:
         
     | 
| 130 | 
         
            +
                        # Ensure audio is in the right format
         
     | 
| 131 | 
         
            +
                        if np.abs(audio_float).max() > 1.0:
         
     | 
| 132 | 
         
            +
                            audio_float = audio_float / np.abs(audio_float).max()
         
     | 
| 133 | 
         | 
| 134 | 
         
            +
                        embedding = self.encoder.embed_utterance(audio_float)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 135 | 
         | 
| 136 | 
         
             
                        return embedding
         
     | 
| 137 | 
         
             
                    except Exception as e:
         
     | 
| 
         | 
|
| 269 | 
         
             
                    }
         
     | 
| 270 | 
         | 
| 271 | 
         | 
| 272 | 
         
            +
            class WhisperTranscriber:
         
     | 
| 273 | 
         
            +
                """Simple Whisper transcriber for audio chunks"""
         
     | 
| 274 | 
         
            +
                def __init__(self, model_name="distil-large-v3"):
         
     | 
| 275 | 
         
            +
                    self.model = None
         
     | 
| 276 | 
         
            +
                    self.processor = None
         
     | 
| 277 | 
         
            +
                    self.model_name = model_name
         
     | 
| 278 | 
         
            +
                    self.device = "cuda" if torch.cuda.is_available() else "cpu"
         
     | 
| 
         | 
|
| 279 | 
         | 
| 280 | 
         
            +
                def load_model(self):
         
     | 
| 281 | 
         
            +
                    """Load Whisper model"""
         
     | 
| 282 | 
         
             
                    try:
         
     | 
| 283 | 
         
            +
                        from transformers import WhisperProcessor, WhisperForConditionalGeneration
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 284 | 
         | 
| 285 | 
         
            +
                        self.processor = WhisperProcessor.from_pretrained(f"distil-whisper/{self.model_name}")
         
     | 
| 286 | 
         
            +
                        self.model = WhisperForConditionalGeneration.from_pretrained(f"distil-whisper/{self.model_name}")
         
     | 
| 287 | 
         
            +
                        self.model.to(self.device)
         
     | 
| 288 | 
         
            +
                        
         
     | 
| 289 | 
         
            +
                        return True
         
     | 
| 290 | 
         
            +
                    except Exception as e:
         
     | 
| 291 | 
         
            +
                        print(f"Error loading Whisper model: {e}")
         
     | 
| 292 | 
         
            +
                        return False
         
     | 
| 293 | 
         
            +
                
         
     | 
| 294 | 
         
            +
                def transcribe(self, audio_array, sample_rate=16000):
         
     | 
| 295 | 
         
            +
                    """Transcribe audio array"""
         
     | 
| 296 | 
         
            +
                    try:
         
     | 
| 297 | 
         
            +
                        if self.model is None:
         
     | 
| 298 | 
         
            +
                            return ""
         
     | 
| 299 | 
         
            +
                        
         
     | 
| 300 | 
         
            +
                        # Ensure audio is the right sample rate
         
     | 
| 301 | 
         
            +
                        if sample_rate != 16000:
         
     | 
| 302 | 
         
            +
                            audio_array = torchaudio.functional.resample(
         
     | 
| 303 | 
         
            +
                                torch.tensor(audio_array).float(),
         
     | 
| 304 | 
         
            +
                                orig_freq=sample_rate,
         
     | 
| 305 | 
         
            +
                                new_freq=16000
         
     | 
| 306 | 
         
            +
                            ).numpy()
         
     | 
| 307 | 
         
            +
                        
         
     | 
| 308 | 
         
            +
                        # Process audio
         
     | 
| 309 | 
         
            +
                        inputs = self.processor(audio_array, sampling_rate=16000, return_tensors="pt")
         
     | 
| 310 | 
         
            +
                        inputs = inputs.to(self.device)
         
     | 
| 311 | 
         
            +
                        
         
     | 
| 312 | 
         
            +
                        # Generate transcription
         
     | 
| 313 | 
         
            +
                        with torch.no_grad():
         
     | 
| 314 | 
         
            +
                            predicted_ids = self.model.generate(inputs["input_features"])
         
     | 
| 315 | 
         
            +
                        
         
     | 
| 316 | 
         
            +
                        # Decode transcription
         
     | 
| 317 | 
         
            +
                        transcription = self.processor.batch_decode(predicted_ids, skip_special_tokens=True)
         
     | 
| 318 | 
         
            +
                        
         
     | 
| 319 | 
         
            +
                        return transcription[0] if transcription else ""
         
     | 
| 320 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 321 | 
         
             
                    except Exception as e:
         
     | 
| 322 | 
         
            +
                        print(f"Transcription error: {e}")
         
     | 
| 323 | 
         
            +
                        return ""
         
     | 
| 324 | 
         | 
| 325 | 
         | 
| 326 | 
         
             
            class RealtimeSpeakerDiarization:
         
     | 
| 
         | 
|
| 328 | 
         
             
                    self.encoder = None
         
     | 
| 329 | 
         
             
                    self.audio_processor = None
         
     | 
| 330 | 
         
             
                    self.speaker_detector = None
         
     | 
| 331 | 
         
            +
                    self.transcriber = None
         
     | 
| 332 | 
         
            +
                    self.audio_buffer = []
         
     | 
| 333 | 
         
            +
                    self.processing_thread = None
         
     | 
| 334 | 
         
             
                    self.sentence_queue = queue.Queue()
         
     | 
| 335 | 
         
             
                    self.full_sentences = []
         
     | 
| 336 | 
         
             
                    self.sentence_speakers = []
         
     | 
| 337 | 
         
             
                    self.pending_sentences = []
         
     | 
| 338 | 
         
             
                    self.displayed_text = ""
         
     | 
| 
         | 
|
| 339 | 
         
             
                    self.is_running = False
         
     | 
| 340 | 
         
             
                    self.change_threshold = DEFAULT_CHANGE_THRESHOLD
         
     | 
| 341 | 
         
             
                    self.max_speakers = DEFAULT_MAX_SPEAKERS
         
     | 
| 342 | 
         
            +
                    self.audio_chunks = []
         
     | 
| 343 | 
         
            +
                    self.chunk_counter = 0
         
     | 
| 344 | 
         | 
| 345 | 
         
             
                def initialize_models(self):
         
     | 
| 346 | 
         
            +
                    """Initialize the speaker encoder and transcription models"""
         
     | 
| 347 | 
         
             
                    try:
         
     | 
| 348 | 
         
             
                        device_str = "cuda" if torch.cuda.is_available() else "cpu"
         
     | 
| 349 | 
         
             
                        print(f"Using device: {device_str}")
         
     | 
| 350 | 
         | 
| 351 | 
         
            +
                        # Initialize speaker encoder
         
     | 
| 352 | 
         
             
                        self.encoder = SpeechBrainEncoder(device=device_str)
         
     | 
| 353 | 
         
            +
                        encoder_success = self.encoder.load_model()
         
     | 
| 354 | 
         
            +
                        
         
     | 
| 355 | 
         
            +
                        # Initialize transcriber
         
     | 
| 356 | 
         
            +
                        self.transcriber = WhisperTranscriber(FINAL_TRANSCRIPTION_MODEL)
         
     | 
| 357 | 
         
            +
                        transcriber_success = self.transcriber.load_model()
         
     | 
| 358 | 
         | 
| 359 | 
         
            +
                        if encoder_success and transcriber_success:
         
     | 
| 360 | 
         
             
                            self.audio_processor = AudioProcessor(self.encoder)
         
     | 
| 361 | 
         
             
                            self.speaker_detector = SpeakerChangeDetector(
         
     | 
| 362 | 
         
             
                                embedding_dim=self.encoder.embedding_dim,
         
     | 
| 363 | 
         
             
                                change_threshold=self.change_threshold,
         
     | 
| 364 | 
         
             
                                max_speakers=self.max_speakers
         
     | 
| 365 | 
         
             
                            )
         
     | 
| 366 | 
         
            +
                            print("Models loaded successfully!")
         
     | 
| 
         | 
|
| 367 | 
         
             
                            return True
         
     | 
| 368 | 
         
             
                        else:
         
     | 
| 369 | 
         
            +
                            print("Failed to load models")
         
     | 
| 370 | 
         
             
                            return False
         
     | 
| 371 | 
         
             
                    except Exception as e:
         
     | 
| 372 | 
         
             
                        print(f"Model initialization error: {e}")
         
     | 
| 373 | 
         
             
                        return False
         
     | 
| 374 | 
         | 
| 375 | 
         
            +
                def process_audio_stream(self, audio_data, sample_rate):
         
     | 
| 376 | 
         
            +
                    """Process incoming audio stream data"""
         
     | 
| 377 | 
         
            +
                    if not self.is_running or self.encoder is None:
         
     | 
| 378 | 
         
            +
                        return
         
     | 
| 379 | 
         
            +
                    
         
     | 
| 380 | 
         
            +
                    try:
         
     | 
| 381 | 
         
            +
                        # Convert audio data to numpy array if needed
         
     | 
| 382 | 
         
            +
                        if isinstance(audio_data, tuple):
         
     | 
| 383 | 
         
            +
                            sample_rate, audio_array = audio_data
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 384 | 
         
             
                        else:
         
     | 
| 385 | 
         
            +
                            audio_array = audio_data
         
     | 
| 386 | 
         
            +
                        
         
     | 
| 387 | 
         
            +
                        # Ensure audio is float32 and normalized
         
     | 
| 388 | 
         
            +
                        if audio_array.dtype != np.float32:
         
     | 
| 389 | 
         
            +
                            if audio_array.dtype == np.int16:
         
     | 
| 390 | 
         
            +
                                audio_array = audio_array.astype(np.float32) / 32768.0
         
     | 
| 391 | 
         
            +
                            else:
         
     | 
| 392 | 
         
            +
                                audio_array = audio_array.astype(np.float32)
         
     | 
| 393 | 
         
            +
                        
         
     | 
| 394 | 
         
            +
                        # Ensure mono audio
         
     | 
| 395 | 
         
            +
                        if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
         
     | 
| 396 | 
         
            +
                            audio_array = np.mean(audio_array, axis=1)
         
     | 
| 397 | 
         
            +
                        
         
     | 
| 398 | 
         
            +
                        # Add to buffer
         
     | 
| 399 | 
         
            +
                        self.audio_buffer.extend(audio_array.flatten())
         
     | 
| 400 | 
         
            +
                        
         
     | 
| 401 | 
         
            +
                        # Process when we have enough audio (about 2 seconds)
         
     | 
| 402 | 
         
            +
                        target_length = int(sample_rate * 2.0)
         
     | 
| 403 | 
         
            +
                        if len(self.audio_buffer) >= target_length:
         
     | 
| 404 | 
         
            +
                            self.process_audio_chunk()
         
     | 
| 405 | 
         
            +
                            
         
     | 
| 406 | 
         
            +
                    except Exception as e:
         
     | 
| 407 | 
         
            +
                        print(f"Error processing audio stream: {e}")
         
     | 
| 408 | 
         | 
| 409 | 
         
            +
                def process_audio_chunk(self):
         
     | 
| 410 | 
         
            +
                    """Process accumulated audio chunk"""
         
     | 
| 411 | 
         
            +
                    try:
         
     | 
| 412 | 
         
            +
                        if len(self.audio_buffer) < SAMPLE_RATE:  # Need at least 1 second
         
     | 
| 413 | 
         
            +
                            return
         
     | 
| 414 | 
         
            +
                        
         
     | 
| 415 | 
         
            +
                        # Get audio chunk
         
     | 
| 416 | 
         
            +
                        audio_chunk = np.array(self.audio_buffer[:int(SAMPLE_RATE * 2)])
         
     | 
| 417 | 
         
            +
                        self.audio_buffer = self.audio_buffer[int(SAMPLE_RATE * 1.5):]  # Keep some overlap
         
     | 
| 418 | 
         
            +
                        
         
     | 
| 419 | 
         
            +
                        # Transcribe audio
         
     | 
| 420 | 
         
            +
                        transcription = self.transcriber.transcribe(audio_chunk, SAMPLE_RATE)
         
     | 
| 421 | 
         
            +
                        
         
     | 
| 422 | 
         
            +
                        if transcription.strip():
         
     | 
| 423 | 
         
            +
                            # Extract speaker embedding
         
     | 
| 424 | 
         
            +
                            speaker_embedding = self.audio_processor.extract_embedding(audio_chunk)
         
     | 
| 425 | 
         
            +
                            
         
     | 
| 426 | 
         
            +
                            # Add to queue for processing
         
     | 
| 427 | 
         
            +
                            self.sentence_queue.put((transcription.strip(), speaker_embedding))
         
     | 
| 428 | 
         
            +
                            
         
     | 
| 429 | 
         
            +
                    except Exception as e:
         
     | 
| 430 | 
         
            +
                        print(f"Error processing audio chunk: {e}")
         
     | 
| 431 | 
         | 
| 432 | 
         
             
                def process_sentence_queue(self):
         
     | 
| 433 | 
         
             
                    """Process sentences in the queue for speaker detection"""
         
     | 
| 434 | 
         
             
                    while self.is_running:
         
     | 
| 435 | 
         
             
                        try:
         
     | 
| 436 | 
         
            +
                            text, speaker_embedding = self.sentence_queue.get(timeout=1)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 437 | 
         | 
| 438 | 
         
             
                            # Store sentence and embedding
         
     | 
| 439 | 
         
             
                            self.full_sentences.append((text, speaker_embedding))
         
     | 
| 
         | 
|
| 446 | 
         
             
                            speaker_id, similarity = self.speaker_detector.add_embedding(speaker_embedding)
         
     | 
| 447 | 
         
             
                            self.sentence_speakers.append(speaker_id)
         
     | 
| 448 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 449 | 
         
             
                        except queue.Empty:
         
     | 
| 450 | 
         
             
                            continue
         
     | 
| 451 | 
         
             
                        except Exception as e:
         
     | 
| 
         | 
|
| 457 | 
         
             
                        return "Please initialize models first!"
         
     | 
| 458 | 
         | 
| 459 | 
         
             
                    try:
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 460 | 
         
             
                        # Start sentence processing thread
         
     | 
| 461 | 
         
             
                        self.is_running = True
         
     | 
| 462 | 
         
            +
                        self.processing_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
         
     | 
| 463 | 
         
            +
                        self.processing_thread.start()
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 464 | 
         | 
| 465 | 
         
            +
                        return "Recording started successfully! Start speaking into your microphone."
         
     | 
| 466 | 
         | 
| 467 | 
         
             
                    except Exception as e:
         
     | 
| 468 | 
         
             
                        return f"Error starting recording: {e}"
         
     | 
| 469 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 470 | 
         
             
                def stop_recording(self):
         
     | 
| 471 | 
         
             
                    """Stop the recording process"""
         
     | 
| 472 | 
         
             
                    self.is_running = False
         
     | 
| 473 | 
         
            +
                    self.audio_buffer = []
         
     | 
| 
         | 
|
| 474 | 
         
             
                    return "Recording stopped!"
         
     | 
| 475 | 
         | 
| 476 | 
         
             
                def clear_conversation(self):
         
     | 
| 
         | 
|
| 479 | 
         
             
                    self.sentence_speakers = []
         
     | 
| 480 | 
         
             
                    self.pending_sentences = []
         
     | 
| 481 | 
         
             
                    self.displayed_text = ""
         
     | 
| 482 | 
         
            +
                    self.audio_buffer = []
         
     | 
| 483 | 
         | 
| 484 | 
         
             
                    if self.speaker_detector:
         
     | 
| 485 | 
         
             
                        self.speaker_detector = SpeakerChangeDetector(
         
     | 
| 
         | 
|
| 511 | 
         
             
                            sentence_text, _ = sentence
         
     | 
| 512 | 
         
             
                            if i >= len(self.sentence_speakers):
         
     | 
| 513 | 
         
             
                                color = "#FFFFFF"
         
     | 
| 514 | 
         
            +
                                speaker_name = "Speaker ?"
         
     | 
| 515 | 
         
             
                            else:
         
     | 
| 516 | 
         
             
                                speaker_id = self.sentence_speakers[i]
         
     | 
| 517 | 
         
             
                                color = self.speaker_detector.get_color_for_speaker(speaker_id)
         
     | 
| 
         | 
|
| 520 | 
         
             
                            sentences_with_style.append(
         
     | 
| 521 | 
         
             
                                f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
         
     | 
| 522 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 523 | 
         
             
                        if sentences_with_style:
         
     | 
| 524 | 
         
             
                            return "<br><br>".join(sentences_with_style)
         
     | 
| 525 | 
         
             
                        else:
         
     | 
| 
         | 
|
| 542 | 
         
             
                            f"**Last Similarity:** {status['last_similarity']:.3f}",
         
     | 
| 543 | 
         
             
                            f"**Change Threshold:** {status['threshold']:.2f}",
         
     | 
| 544 | 
         
             
                            f"**Total Sentences:** {len(self.full_sentences)}",
         
     | 
| 545 | 
         
            +
                            f"**Audio Buffer Size:** {len(self.audio_buffer)}",
         
     | 
| 546 | 
         
             
                            "",
         
     | 
| 547 | 
         
             
                            "**Speaker Segment Counts:**"
         
     | 
| 548 | 
         
             
                        ]
         
     | 
| 
         | 
|
| 600 | 
         
             
                return diarization_system.get_status_info()
         
     | 
| 601 | 
         | 
| 602 | 
         | 
| 603 | 
         
            +
            def process_audio(audio_data):
         
     | 
| 604 | 
         
            +
                """Process audio from Gradio audio input"""
         
     | 
| 605 | 
         
            +
                if audio_data is not None:
         
     | 
| 606 | 
         
            +
                    sample_rate, audio_array = audio_data
         
     | 
| 607 | 
         
            +
                    diarization_system.process_audio_stream(audio_array, sample_rate)
         
     | 
| 608 | 
         
            +
                return get_conversation(), get_status()
         
     | 
| 609 | 
         | 
| 610 | 
         | 
| 611 | 
         
             
            # Create Gradio interface
         
     | 
| 612 | 
         
             
            def create_interface():
         
     | 
| 613 | 
         
            +
                with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Dark()) as app:
         
     | 
| 614 | 
         
             
                    gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
         
     | 
| 615 | 
         
            +
                    gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding using your browser's microphone.")
         
     | 
| 616 | 
         | 
| 617 | 
         
             
                    with gr.Row():
         
     | 
| 618 | 
         
             
                        with gr.Column(scale=2):
         
     | 
| 619 | 
         
            +
                            # Audio input
         
     | 
| 620 | 
         
             
                            audio_input = gr.Audio(
         
     | 
| 621 | 
         
            +
                                source="microphone",
         
     | 
| 622 | 
         
            +
                                type="numpy",
         
     | 
| 623 | 
         
             
                                streaming=True,
         
     | 
| 624 | 
         
            +
                                label="🎙️ Microphone Input"
         
     | 
| 
         | 
|
| 625 | 
         
             
                            )
         
     | 
| 626 | 
         | 
| 627 | 
         
             
                            # Main conversation display
         
     | 
| 
         | 
|
| 641 | 
         
             
                            status_output = gr.Textbox(
         
     | 
| 642 | 
         
             
                                label="System Status",
         
     | 
| 643 | 
         
             
                                value="System not initialized",
         
     | 
| 644 | 
         
            +
                                lines=10,
         
     | 
| 645 | 
         
             
                                interactive=False
         
     | 
| 646 | 
         
             
                            )
         
     | 
| 647 | 
         | 
| 
         | 
|
| 668 | 
         | 
| 669 | 
         
             
                            update_settings_btn = gr.Button("Update Settings")
         
     | 
| 670 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 671 | 
         
             
                            # Speaker color legend
         
     | 
| 672 | 
         
             
                            gr.Markdown("## 🎨 Speaker Colors")
         
     | 
| 673 | 
         
             
                            color_info = []
         
     | 
| 
         | 
|
| 675 | 
         
             
                                color_info.append(f'<span style="color:{color};">■</span> Speaker {i+1} ({name})')
         
     | 
| 676 | 
         | 
| 677 | 
         
             
                            gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
         
     | 
| 678 | 
         
            +
                            
         
     | 
| 679 | 
         
            +
                            # Instructions
         
     | 
| 680 | 
         
            +
                            gr.Markdown("""
         
     | 
| 681 | 
         
            +
                            ## 📋 Instructions
         
     | 
| 682 | 
         
            +
                            1. **Initialize System** - Load AI models
         
     | 
| 683 | 
         
            +
                            2. **Allow microphone access** when prompted
         
     | 
| 684 | 
         
            +
                            3. **Start Recording** - Begin real-time processing
         
     | 
| 685 | 
         
            +
                            4. **Speak naturally** - The system will detect different speakers
         
     | 
| 686 | 
         
            +
                            5. **Stop Recording** when done
         
     | 
| 687 | 
         
            +
                            
         
     | 
| 688 | 
         
            +
                            **Note:** Processing happens in real-time with ~2 second chunks for better accuracy.
         
     | 
| 689 | 
         
            +
                            """)
         
     | 
| 690 | 
         | 
| 691 | 
         
             
                    # Event handlers
         
     | 
| 692 | 
         
             
                    def on_initialize():
         
     | 
| 
         | 
|
| 751 | 
         
             
                        outputs=[status_output]
         
     | 
| 752 | 
         
             
                    )
         
     | 
| 753 | 
         | 
| 754 | 
         
            +
                    # Process streaming audio
         
     | 
| 755 | 
         
             
                    audio_input.stream(
         
     | 
| 756 | 
         
            +
                        process_audio,
         
     | 
| 757 | 
         
             
                        inputs=[audio_input],
         
     | 
| 758 | 
         
            +
                        outputs=[conversation_output, status_output],
         
     | 
| 759 | 
         
            +
                        time_limit=60,
         
     | 
| 760 | 
         
            +
                        stream_every=0.5
         
     | 
| 761 | 
         
             
                    )
         
     | 
| 762 | 
         | 
| 763 | 
         
            +
                    # Auto-refresh every 3 seconds
         
     | 
| 764 | 
         
            +
                    refresh_timer = gr.Timer(3.0)
         
     | 
| 765 | 
         
             
                    refresh_timer.tick(
         
     | 
| 766 | 
         
            +
                        lambda: (get_conversation(), get_status()),
         
     | 
| 767 | 
         
             
                        outputs=[conversation_output, status_output]
         
     | 
| 768 | 
         
             
                    )
         
     | 
| 769 | 
         |