Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import queue | |
import torch | |
import time | |
import threading | |
import os | |
import urllib.request | |
import torchaudio | |
from scipy.spatial.distance import cosine | |
from scipy.signal import resample | |
from RealtimeSTT import AudioToTextRecorder | |
from fastapi import FastAPI, APIRouter | |
from fastrtc import Stream, AsyncStreamHandler | |
import json | |
import asyncio | |
import uvicorn | |
from queue import Queue | |
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Simplified configuration parameters | |
SILENCE_THRESHS = [0, 0.4] | |
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3" | |
FINAL_BEAM_SIZE = 5 | |
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en" | |
REALTIME_BEAM_SIZE = 5 | |
TRANSCRIPTION_LANGUAGE = "en" | |
SILERO_SENSITIVITY = 0.4 | |
WEBRTC_SENSITIVITY = 3 | |
MIN_LENGTH_OF_RECORDING = 0.7 | |
PRE_RECORDING_BUFFER_DURATION = 0.35 | |
# Speaker change detection parameters | |
DEFAULT_CHANGE_THRESHOLD = 0.65 | |
EMBEDDING_HISTORY_SIZE = 5 | |
MIN_SEGMENT_DURATION = 1.5 | |
DEFAULT_MAX_SPEAKERS = 4 | |
ABSOLUTE_MAX_SPEAKERS = 8 | |
# Global variables | |
SAMPLE_RATE = 16000 | |
BUFFER_SIZE = 1024 | |
CHANNELS = 1 | |
# Speaker colors - more distinguishable colors | |
SPEAKER_COLORS = [ | |
"#FF6B6B", # Red | |
"#4ECDC4", # Teal | |
"#45B7D1", # Blue | |
"#96CEB4", # Green | |
"#FFEAA7", # Yellow | |
"#DDA0DD", # Plum | |
"#98D8C8", # Mint | |
"#F7DC6F", # Gold | |
] | |
SPEAKER_COLOR_NAMES = [ | |
"Red", "Teal", "Blue", "Green", "Yellow", "Plum", "Mint", "Gold" | |
] | |
class SpeechBrainEncoder: | |
"""ECAPA-TDNN encoder from SpeechBrain for speaker embeddings""" | |
def __init__(self, device="cpu"): | |
self.device = device | |
self.model = None | |
self.embedding_dim = 192 | |
self.model_loaded = False | |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain") | |
os.makedirs(self.cache_dir, exist_ok=True) | |
def load_model(self): | |
"""Load the ECAPA-TDNN model""" | |
try: | |
from speechbrain.pretrained import EncoderClassifier | |
self.model = EncoderClassifier.from_hparams( | |
source="speechbrain/spkrec-ecapa-voxceleb", | |
savedir=self.cache_dir, | |
run_opts={"device": self.device} | |
) | |
self.model_loaded = True | |
logger.info("ECAPA-TDNN model loaded successfully!") | |
return True | |
except Exception as e: | |
logger.error(f"Error loading ECAPA-TDNN model: {e}") | |
return False | |
def embed_utterance(self, audio, sr=16000): | |
"""Extract speaker embedding from audio""" | |
if not self.model_loaded: | |
raise ValueError("Model not loaded. Call load_model() first.") | |
try: | |
if isinstance(audio, np.ndarray): | |
# Ensure audio is float32 and properly normalized | |
audio = audio.astype(np.float32) | |
if np.max(np.abs(audio)) > 1.0: | |
audio = audio / np.max(np.abs(audio)) | |
waveform = torch.tensor(audio).unsqueeze(0) | |
else: | |
waveform = audio.unsqueeze(0) | |
# Resample if necessary | |
if sr != 16000: | |
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000) | |
with torch.no_grad(): | |
embedding = self.model.encode_batch(waveform) | |
return embedding.squeeze().cpu().numpy() | |
except Exception as e: | |
logger.error(f"Error extracting embedding: {e}") | |
return np.zeros(self.embedding_dim) | |
class AudioProcessor: | |
"""Processes audio data to extract speaker embeddings""" | |
def __init__(self, encoder): | |
self.encoder = encoder | |
self.audio_buffer = [] | |
self.min_audio_length = int(SAMPLE_RATE * 1.0) # Minimum 1 second of audio | |
def add_audio_chunk(self, audio_chunk): | |
"""Add audio chunk to buffer""" | |
self.audio_buffer.extend(audio_chunk) | |
# Keep buffer from getting too large | |
max_buffer_size = int(SAMPLE_RATE * 10) # 10 seconds max | |
if len(self.audio_buffer) > max_buffer_size: | |
self.audio_buffer = self.audio_buffer[-max_buffer_size:] | |
def extract_embedding_from_buffer(self): | |
"""Extract embedding from current audio buffer""" | |
if len(self.audio_buffer) < self.min_audio_length: | |
return None | |
try: | |
# Use the last portion of the buffer for embedding | |
audio_segment = np.array(self.audio_buffer[-self.min_audio_length:], dtype=np.float32) | |
# Normalize audio | |
if np.max(np.abs(audio_segment)) > 0: | |
audio_segment = audio_segment / np.max(np.abs(audio_segment)) | |
else: | |
return None | |
embedding = self.encoder.embed_utterance(audio_segment) | |
return embedding | |
except Exception as e: | |
logger.error(f"Embedding extraction error: {e}") | |
return None | |
class SpeakerChangeDetector: | |
"""Improved speaker change detector""" | |
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS): | |
self.embedding_dim = embedding_dim | |
self.change_threshold = change_threshold | |
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) | |
self.current_speaker = 0 | |
self.speaker_embeddings = [[] for _ in range(self.max_speakers)] | |
self.speaker_centroids = [None] * self.max_speakers | |
self.last_change_time = time.time() | |
self.last_similarity = 1.0 | |
self.active_speakers = set([0]) | |
self.segment_counter = 0 | |
def set_max_speakers(self, max_speakers): | |
"""Update the maximum number of speakers""" | |
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS) | |
if new_max < self.max_speakers: | |
# Remove speakers beyond the new limit | |
for speaker_id in list(self.active_speakers): | |
if speaker_id >= new_max: | |
self.active_speakers.discard(speaker_id) | |
if self.current_speaker >= new_max: | |
self.current_speaker = 0 | |
# Resize arrays | |
if new_max > self.max_speakers: | |
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)]) | |
self.speaker_centroids.extend([None] * (new_max - self.max_speakers)) | |
else: | |
self.speaker_embeddings = self.speaker_embeddings[:new_max] | |
self.speaker_centroids = self.speaker_centroids[:new_max] | |
self.max_speakers = new_max | |
def set_change_threshold(self, threshold): | |
"""Update the threshold for detecting speaker changes""" | |
self.change_threshold = max(0.1, min(threshold, 0.95)) | |
def add_embedding(self, embedding, timestamp=None): | |
"""Add a new embedding and detect speaker changes""" | |
current_time = timestamp or time.time() | |
self.segment_counter += 1 | |
# Initialize first speaker | |
if not self.speaker_embeddings[0]: | |
self.speaker_embeddings[0].append(embedding) | |
self.speaker_centroids[0] = embedding.copy() | |
self.active_speakers.add(0) | |
return 0, 1.0 | |
# Calculate similarity with current speaker | |
current_centroid = self.speaker_centroids[self.current_speaker] | |
if current_centroid is not None: | |
similarity = 1.0 - cosine(embedding, current_centroid) | |
else: | |
similarity = 0.5 | |
self.last_similarity = similarity | |
# Check for speaker change | |
time_since_last_change = current_time - self.last_change_time | |
speaker_changed = False | |
if time_since_last_change >= MIN_SEGMENT_DURATION and similarity < self.change_threshold: | |
# Find best matching speaker | |
best_speaker = self.current_speaker | |
best_similarity = similarity | |
for speaker_id in self.active_speakers: | |
if speaker_id == self.current_speaker: | |
continue | |
centroid = self.speaker_centroids[speaker_id] | |
if centroid is not None: | |
speaker_similarity = 1.0 - cosine(embedding, centroid) | |
if speaker_similarity > best_similarity and speaker_similarity > self.change_threshold: | |
best_similarity = speaker_similarity | |
best_speaker = speaker_id | |
# If no good match found and we can add a new speaker | |
if best_speaker == self.current_speaker and len(self.active_speakers) < self.max_speakers: | |
for new_id in range(self.max_speakers): | |
if new_id not in self.active_speakers: | |
best_speaker = new_id | |
self.active_speakers.add(new_id) | |
break | |
if best_speaker != self.current_speaker: | |
self.current_speaker = best_speaker | |
self.last_change_time = current_time | |
speaker_changed = True | |
# Update speaker embeddings and centroids | |
self.speaker_embeddings[self.current_speaker].append(embedding) | |
# Keep only recent embeddings (sliding window) | |
max_embeddings = 20 | |
if len(self.speaker_embeddings[self.current_speaker]) > max_embeddings: | |
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-max_embeddings:] | |
# Update centroid | |
if self.speaker_embeddings[self.current_speaker]: | |
self.speaker_centroids[self.current_speaker] = np.mean( | |
self.speaker_embeddings[self.current_speaker], axis=0 | |
) | |
return self.current_speaker, similarity | |
def get_color_for_speaker(self, speaker_id): | |
"""Return color for speaker ID""" | |
if 0 <= speaker_id < len(SPEAKER_COLORS): | |
return SPEAKER_COLORS[speaker_id] | |
return "#FFFFFF" | |
def get_status_info(self): | |
"""Return status information""" | |
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)] | |
return { | |
"current_speaker": self.current_speaker, | |
"speaker_counts": speaker_counts, | |
"active_speakers": len(self.active_speakers), | |
"max_speakers": self.max_speakers, | |
"last_similarity": self.last_similarity, | |
"threshold": self.change_threshold, | |
"segment_counter": self.segment_counter | |
} | |
class RealtimeSpeakerDiarization: | |
def __init__(self): | |
self.encoder = None | |
self.audio_processor = None | |
self.speaker_detector = None | |
self.recorder = None | |
self.sentence_queue = queue.Queue() | |
self.full_sentences = [] | |
self.sentence_speakers = [] | |
self.pending_sentences = [] | |
self.current_conversation = "" | |
self.is_running = False | |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD | |
self.max_speakers = DEFAULT_MAX_SPEAKERS | |
self.last_transcription = "" | |
self.transcription_lock = threading.Lock() | |
def initialize_models(self): | |
"""Initialize the speaker encoder model""" | |
try: | |
device_str = "cuda" if torch.cuda.is_available() else "cpu" | |
logger.info(f"Using device: {device_str}") | |
self.encoder = SpeechBrainEncoder(device=device_str) | |
success = self.encoder.load_model() | |
if success: | |
self.audio_processor = AudioProcessor(self.encoder) | |
self.speaker_detector = SpeakerChangeDetector( | |
embedding_dim=self.encoder.embedding_dim, | |
change_threshold=self.change_threshold, | |
max_speakers=self.max_speakers | |
) | |
logger.info("Models initialized successfully!") | |
return True | |
else: | |
logger.error("Failed to load models") | |
return False | |
except Exception as e: | |
logger.error(f"Model initialization error: {e}") | |
return False | |
def live_text_detected(self, text): | |
"""Callback for real-time transcription updates""" | |
with self.transcription_lock: | |
self.last_transcription = text.strip() | |
def process_final_text(self, text): | |
"""Process final transcribed text with speaker embedding""" | |
text = text.strip() | |
if text: | |
try: | |
# Get audio data for this transcription | |
audio_bytes = getattr(self.recorder, 'last_transcription_bytes', None) | |
if audio_bytes: | |
self.sentence_queue.put((text, audio_bytes)) | |
else: | |
# If no audio bytes, use current speaker | |
self.sentence_queue.put((text, None)) | |
except Exception as e: | |
logger.error(f"Error processing final text: {e}") | |
def process_sentence_queue(self): | |
"""Process sentences in the queue for speaker detection""" | |
while self.is_running: | |
try: | |
text, audio_bytes = self.sentence_queue.get(timeout=1) | |
current_speaker = self.speaker_detector.current_speaker | |
if audio_bytes: | |
# Convert audio data and extract embedding | |
audio_int16 = np.frombuffer(audio_bytes, dtype=np.int16) | |
audio_float = audio_int16.astype(np.float32) / 32768.0 | |
# Extract embedding | |
embedding = self.audio_processor.encoder.embed_utterance(audio_float) | |
if embedding is not None: | |
current_speaker, similarity = self.speaker_detector.add_embedding(embedding) | |
# Store sentence with speaker | |
with self.transcription_lock: | |
self.full_sentences.append((text, current_speaker)) | |
self.update_conversation_display() | |
except queue.Empty: | |
continue | |
except Exception as e: | |
logger.error(f"Error processing sentence: {e}") | |
def update_conversation_display(self): | |
"""Update the conversation display""" | |
try: | |
sentences_with_style = [] | |
for sentence_text, speaker_id in self.full_sentences: | |
color = self.speaker_detector.get_color_for_speaker(speaker_id) | |
speaker_name = f"Speaker {speaker_id + 1}" | |
sentences_with_style.append( | |
f'<span style="color:{color}; font-weight: bold;">{speaker_name}:</span> ' | |
f'<span style="color:#333333;">{sentence_text}</span>' | |
) | |
# Add current transcription if available | |
if self.last_transcription: | |
current_color = self.speaker_detector.get_color_for_speaker(self.speaker_detector.current_speaker) | |
current_speaker = f"Speaker {self.speaker_detector.current_speaker + 1}" | |
sentences_with_style.append( | |
f'<span style="color:{current_color}; font-weight: bold; opacity: 0.7;">{current_speaker}:</span> ' | |
f'<span style="color:#666666; font-style: italic;">{self.last_transcription}...</span>' | |
) | |
if sentences_with_style: | |
self.current_conversation = "<br><br>".join(sentences_with_style) | |
else: | |
self.current_conversation = "<i>Waiting for speech input...</i>" | |
except Exception as e: | |
logger.error(f"Error updating conversation display: {e}") | |
self.current_conversation = f"<i>Error: {str(e)}</i>" | |
def start_recording(self): | |
"""Start the recording and transcription process""" | |
if self.encoder is None: | |
return "Please initialize models first!" | |
try: | |
# Setup recorder configuration | |
recorder_config = { | |
'spinner': False, | |
'use_microphone': False, # Using FastRTC for audio input | |
'model': FINAL_TRANSCRIPTION_MODEL, | |
'language': TRANSCRIPTION_LANGUAGE, | |
'silero_sensitivity': SILERO_SENSITIVITY, | |
'webrtc_sensitivity': WEBRTC_SENSITIVITY, | |
'post_speech_silence_duration': SILENCE_THRESHS[1], | |
'min_length_of_recording': MIN_LENGTH_OF_RECORDING, | |
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION, | |
'min_gap_between_recordings': 0, | |
'enable_realtime_transcription': True, | |
'realtime_processing_pause': 0.1, | |
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL, | |
'on_realtime_transcription_update': self.live_text_detected, | |
'beam_size': FINAL_BEAM_SIZE, | |
'beam_size_realtime': REALTIME_BEAM_SIZE, | |
'sample_rate': SAMPLE_RATE, | |
} | |
self.recorder = AudioToTextRecorder(**recorder_config) | |
# Start processing threads | |
self.is_running = True | |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True) | |
self.sentence_thread.start() | |
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True) | |
self.transcription_thread.start() | |
return "Recording started successfully!" | |
except Exception as e: | |
logger.error(f"Error starting recording: {e}") | |
return f"Error starting recording: {e}" | |
def run_transcription(self): | |
"""Run the transcription loop""" | |
try: | |
logger.info("Starting transcription thread") | |
while self.is_running: | |
# Just check for final text from recorder, audio is fed externally via FastRTC | |
text = self.recorder.text(self.process_final_text) | |
time.sleep(0.01) # Small sleep to prevent CPU hogging | |
except Exception as e: | |
logger.error(f"Transcription error: {e}") | |
def stop_recording(self): | |
"""Stop the recording process""" | |
self.is_running = False | |
if self.recorder: | |
self.recorder.stop() | |
return "Recording stopped!" | |
def clear_conversation(self): | |
"""Clear all conversation data""" | |
with self.transcription_lock: | |
self.full_sentences = [] | |
self.last_transcription = "" | |
self.current_conversation = "Conversation cleared!" | |
if self.speaker_detector: | |
self.speaker_detector = SpeakerChangeDetector( | |
embedding_dim=self.encoder.embedding_dim, | |
change_threshold=self.change_threshold, | |
max_speakers=self.max_speakers | |
) | |
return "Conversation cleared!" | |
def update_settings(self, threshold, max_speakers): | |
"""Update speaker detection settings""" | |
self.change_threshold = threshold | |
self.max_speakers = max_speakers | |
if self.speaker_detector: | |
self.speaker_detector.set_change_threshold(threshold) | |
self.speaker_detector.set_max_speakers(max_speakers) | |
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}" | |
def get_formatted_conversation(self): | |
"""Get the formatted conversation""" | |
return self.current_conversation | |
def get_status_info(self): | |
"""Get current status information""" | |
if not self.speaker_detector: | |
return "Speaker detector not initialized" | |
try: | |
status = self.speaker_detector.get_status_info() | |
status_lines = [ | |
f"**Current Speaker:** {status['current_speaker'] + 1}", | |
f"**Active Speakers:** {status['active_speakers']} of {status['max_speakers']}", | |
f"**Last Similarity:** {status['last_similarity']:.3f}", | |
f"**Change Threshold:** {status['threshold']:.2f}", | |
f"**Total Sentences:** {len(self.full_sentences)}", | |
f"**Segments Processed:** {status['segment_counter']}", | |
"", | |
"**Speaker Activity:**" | |
] | |
for i in range(status['max_speakers']): | |
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}" | |
count = status['speaker_counts'][i] | |
active = "🟢" if count > 0 else "⚫" | |
status_lines.append(f"{active} Speaker {i+1} ({color_name}): {count} segments") | |
return "\n".join(status_lines) | |
except Exception as e: | |
return f"Error getting status: {e}" | |
def process_audio_chunk(self, audio_data, sample_rate=16000): | |
"""Process audio chunk from FastRTC input""" | |
if not self.is_running or self.audio_processor is None: | |
return | |
try: | |
# Ensure audio is float32 | |
if isinstance(audio_data, np.ndarray): | |
if audio_data.dtype != np.float32: | |
audio_data = audio_data.astype(np.float32) | |
else: | |
audio_data = np.array(audio_data, dtype=np.float32) | |
# Ensure mono | |
if len(audio_data.shape) > 1: | |
audio_data = np.mean(audio_data, axis=1) if audio_data.shape[1] > 1 else audio_data.flatten() | |
# Normalize if needed | |
if np.max(np.abs(audio_data)) > 1.0: | |
audio_data = audio_data / np.max(np.abs(audio_data)) | |
# Add to audio processor buffer for speaker detection | |
self.audio_processor.add_audio_chunk(audio_data) | |
# Periodically extract embeddings for speaker detection | |
if len(self.audio_processor.audio_buffer) % (SAMPLE_RATE // 2) == 0: # Every 0.5 seconds | |
embedding = self.audio_processor.extract_embedding_from_buffer() | |
if embedding is not None: | |
self.speaker_detector.add_embedding(embedding) | |
# Feed audio to RealtimeSTT recorder | |
if self.recorder and self.is_running: | |
# Convert float32 [-1.0, 1.0] to int16 for RealtimeSTT | |
int16_data = (audio_data * 32768.0).astype(np.int16).tobytes() | |
if sample_rate != 16000: | |
int16_data = self.resample_audio(int16_data, sample_rate, 16000) | |
self.recorder.feed_audio(int16_data) | |
except Exception as e: | |
logger.error(f"Error processing audio chunk: {e}") | |
def resample_audio(self, audio_bytes, from_rate, to_rate): | |
"""Resample audio to target sample rate""" | |
try: | |
audio_np = np.frombuffer(audio_bytes, dtype=np.int16) | |
num_samples = len(audio_np) | |
num_target_samples = int(num_samples * to_rate / from_rate) | |
resampled = resample(audio_np, num_target_samples) | |
return resampled.astype(np.int16).tobytes() | |
except Exception as e: | |
logger.error(f"Error resampling audio: {e}") | |
return audio_bytes | |
# FastRTC Audio Handler | |
class DiarizationHandler(AsyncStreamHandler): | |
def __init__(self, diarization_system): | |
super().__init__() | |
self.diarization_system = diarization_system | |
self.audio_buffer = [] | |
self.buffer_size = BUFFER_SIZE | |
def copy(self): | |
"""Return a fresh handler for each new stream connection""" | |
return DiarizationHandler(self.diarization_system) | |
async def emit(self): | |
"""Not used - we only receive audio""" | |
return None | |
async def receive(self, frame): | |
"""Receive audio data from FastRTC""" | |
try: | |
if not self.diarization_system.is_running: | |
return | |
# Extract audio data | |
audio_data = getattr(frame, 'data', frame) | |
# Convert to numpy array | |
if isinstance(audio_data, bytes): | |
audio_array = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0 | |
elif isinstance(audio_data, (list, tuple)): | |
sample_rate, audio_array = audio_data | |
if isinstance(audio_array, (list, tuple)): | |
audio_array = np.array(audio_array, dtype=np.float32) | |
else: | |
audio_array = np.array(audio_data, dtype=np.float32) | |
# Ensure 1D | |
if len(audio_array.shape) > 1: | |
audio_array = audio_array.flatten() | |
# Buffer audio chunks | |
self.audio_buffer.extend(audio_array) | |
# Process in chunks | |
while len(self.audio_buffer) >= self.buffer_size: | |
chunk = np.array(self.audio_buffer[:self.buffer_size]) | |
self.audio_buffer = self.audio_buffer[self.buffer_size:] | |
# Process asynchronously | |
await self.process_audio_async(chunk) | |
except Exception as e: | |
logger.error(f"Error in FastRTC receive: {e}") | |
async def process_audio_async(self, audio_data): | |
"""Process audio data asynchronously""" | |
try: | |
loop = asyncio.get_event_loop() | |
await loop.run_in_executor( | |
None, | |
self.diarization_system.process_audio_chunk, | |
audio_data, | |
SAMPLE_RATE | |
) | |
except Exception as e: | |
logger.error(f"Error in async audio processing: {e}") | |
# Global instances | |
diarization_system = RealtimeSpeakerDiarization() | |
audio_handler = None | |
def initialize_system(): | |
"""Initialize the diarization system""" | |
global audio_handler | |
try: | |
success = diarization_system.initialize_models() | |
if success: | |
audio_handler = DiarizationHandler(diarization_system) | |
return "✅ System initialized successfully!" | |
else: | |
return "❌ Failed to initialize system. Check logs for details." | |
except Exception as e: | |
logger.error(f"Initialization error: {e}") | |
return f"❌ Initialization error: {str(e)}" | |
def start_recording(): | |
"""Start recording and transcription""" | |
try: | |
result = diarization_system.start_recording() | |
return f"🎙️ {result}" | |
except Exception as e: | |
return f"❌ Failed to start recording: {str(e)}" | |
def stop_recording(): | |
"""Stop recording and transcription""" | |
try: | |
result = diarization_system.stop_recording() | |
return f"⏹️ {result}" | |
except Exception as e: | |
return f"❌ Failed to stop recording: {str(e)}" | |
def clear_conversation(): | |
"""Clear the conversation""" | |
try: | |
result = diarization_system.clear_conversation() | |
return f"🗑️ {result}" | |
except Exception as e: | |
return f"❌ Failed to clear conversation: {str(e)}" | |
def update_settings(threshold, max_speakers): | |
"""Update system settings""" | |
try: | |
result = diarization_system.update_settings(threshold, max_speakers) | |
return f"⚙️ {result}" | |
except Exception as e: | |
return f"❌ Failed to update settings: {str(e)}" | |
def get_conversation(): | |
"""Get the current conversation""" | |
try: | |
return diarization_system.get_formatted_conversation() | |
except Exception as e: | |
return f"<i>Error getting conversation: {str(e)}</i>" | |
def get_status(): | |
"""Get system status""" | |
try: | |
return diarization_system.get_status_info() | |
except Exception as e: | |
return f"Error getting status: {str(e)}" | |
# Create Gradio interface | |
def create_interface(): | |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as interface: | |
gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization") | |
gr.Markdown("Live transcription with automatic speaker identification using FastRTC audio streaming.") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
# Conversation display | |
conversation_output = gr.HTML( | |
value="<div style='padding: 20px; background: #f8f9fa; border-radius: 10px; min-height: 300px;'><i>Click 'Initialize System' to start...</i></div>", | |
label="Live Conversation" | |
) | |
# Control buttons | |
with gr.Row(): | |
init_btn = gr.Button("🔧 Initialize System", variant="secondary", size="lg") | |
start_btn = gr.Button("🎙️ Start", variant="primary", size="lg", interactive=False) | |
stop_btn = gr.Button("⏹️ Stop", variant="stop", size="lg", interactive=False) | |
clear_btn = gr.Button("🗑️ Clear", variant="secondary", size="lg", interactive=False) | |
# Status display | |
status_output = gr.Textbox( | |
label="System Status", | |
value="Ready to initialize...", | |
lines=8, | |
interactive=False | |
) | |
with gr.Column(scale=1): | |
# Settings | |
gr.Markdown("## ⚙️ Settings") | |
threshold_slider = gr.Slider( | |
minimum=0.3, | |
maximum=0.9, | |
step=0.05, | |
value=DEFAULT_CHANGE_THRESHOLD, | |
label="Speaker Change Sensitivity", | |
info="Lower = more sensitive" | |
) | |
max_speakers_slider = gr.Slider( | |
minimum=2, | |
maximum=ABSOLUTE_MAX_SPEAKERS, | |
step=1, | |
value=DEFAULT_MAX_SPEAKERS, | |
label="Maximum Speakers" | |
) | |
update_btn = gr.Button("Update Settings", variant="secondary") | |
# Instructions | |
gr.Markdown(""" | |
## 📋 Instructions | |
1. **Initialize** the system (loads AI models) | |
2. **Start** recording | |
3. **Speak** - system will transcribe and identify speakers | |
4. **Monitor** real-time results below | |
## 🎨 Speaker Colors | |
- 🔴 Speaker 1 (Red) | |
- 🟢 Speaker 2 (Teal) | |
- 🔵 Speaker 3 (Blue) | |
- 🟡 Speaker 4 (Green) | |
- 🟣 Speaker 5 (Yellow) | |
- 🟤 Speaker 6 (Plum) | |
- 🟫 Speaker 7 (Mint) | |
- 🟨 Speaker 8 (Gold) | |
""") | |
# Event handlers | |
def on_initialize(): | |
result = initialize_system() | |
if "✅" in result: | |
return result, gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True) | |
else: | |
return result, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False) | |
def on_start(): | |
result = start_recording() | |
return result, gr.update(interactive=False), gr.update(interactive=True) | |
def on_stop(): | |
result = stop_recording() | |
return result, gr.update(interactive=True), gr.update(interactive=False) | |
def on_clear(): | |
result = clear_conversation() | |
return result | |
def on_update_settings(threshold, max_speakers): | |
result = update_settings(threshold, int(max_speakers)) | |
return result | |
def refresh_conversation(): | |
return get_conversation() | |
def refresh_status(): | |
return get_status() | |
# Button click handlers | |
init_btn.click( | |
fn=on_initialize, | |
outputs=[status_output, start_btn, stop_btn, clear_btn] | |
) | |
start_btn.click( | |
fn=on_start, | |
outputs=[status_output, start_btn, stop_btn] | |
) | |
stop_btn.click( | |
fn=on_stop, | |
outputs=[status_output, start_btn, stop_btn] | |
) | |
clear_btn.click( | |
fn=on_clear, | |
outputs=[status_output] | |
) | |
update_btn.click( | |
fn=on_update_settings, | |
inputs=[threshold_slider, max_speakers_slider], | |
outputs=[status_output] | |
) | |
# Auto-refresh conversation display every 1 second | |
conversation_timer = gr.Timer(1) | |
conversation_timer.tick(refresh_conversation, outputs=[conversation_output]) | |
# Auto-refresh status every 2 seconds | |
status_timer = gr.Timer(2) | |
status_timer.tick(refresh_status, outputs=[status_output]) | |
return interface | |
# FastAPI setup for FastRTC integration | |
app = FastAPI() | |
async def root(): | |
return {"message": "Real-time Speaker Diarization API"} | |
async def health_check(): | |
return {"status": "healthy", "system_running": diarization_system.is_running} | |
async def api_initialize(): | |
result = initialize_system() | |
return {"result": result, "success": "✅" in result} | |
async def api_start(): | |
result = start_recording() | |
return {"result": result, "success": "🎙️" in result} | |
async def api_stop(): | |
result = stop_recording() | |
return {"result": result, "success": "⏹️" in result} | |
async def api_clear(): | |
result = clear_conversation() | |
return {"result": result} | |
async def api_get_conversation(): | |
return {"conversation": get_conversation()} | |
async def api_get_status(): | |
return {"status": get_status()} | |
async def api_update_settings(threshold: float, max_speakers: int): | |
result = update_settings(threshold, max_speakers) | |
return {"result": result} | |
# FastRTC Stream setup | |
if audio_handler: | |
stream = Stream(handler=audio_handler) | |
app.include_router(stream.router, prefix="/stream") | |
# Main execution | |
if __name__ == "__main__": | |
import argparse | |
parser = argparse.ArgumentParser(description="Real-time Speaker Diarization System") | |
parser.add_argument("--mode", choices=["gradio", "api", "both"], default="gradio", | |
help="Run mode: gradio interface, API only, or both") | |
parser.add_argument("--host", default="0.0.0.0", help="Host to bind to") | |
parser.add_argument("--port", type=int, default=7860, help="Port to bind to") | |
parser.add_argument("--api-port", type=int, default=8000, help="API port (when running both)") | |
args = parser.parse_args() | |
if args.mode == "gradio": | |
# Run Gradio interface only | |
interface = create_interface() | |
interface.launch( | |
server_name=args.host, | |
server_port=args.port, | |
share=True, | |
show_error=True | |
) | |
elif args.mode == "api": | |
# Run FastAPI only | |
uvicorn.run( | |
app, | |
host=args.host, | |
port=args.port, | |
log_level="info" | |
) | |
elif args.mode == "both": | |
# Run both Gradio and FastAPI | |
import multiprocessing | |
import threading | |
def run_gradio(): | |
interface = create_interface() | |
interface.launch( | |
server_name=args.host, | |
server_port=args.port, | |
share=True, | |
show_error=True | |
) | |
def run_fastapi(): | |
uvicorn.run( | |
app, | |
host=args.host, | |
port=args.api_port, | |
log_level="info" | |
) | |
# Start FastAPI in a separate thread | |
api_thread = threading.Thread(target=run_fastapi, daemon=True) | |
api_thread.start() | |
# Start Gradio in main thread | |
run_gradio() |