Andro0s commited on
Commit
41530a7
verified
1 Parent(s): b977c7a

Update tu_dataset.json

Browse files
Files changed (1) hide show
  1. tu_dataset.json +1 -10
tu_dataset.json CHANGED
@@ -1,7 +1,4 @@
1
  [
2
- // =================================================================
3
- // 馃 1. INTELIGENCIA ARTIFICIAL: MANEJO DE DATOS Y SKLEARN B脕SICO
4
- // =================================================================
5
  {
6
  "prompt": "Funci贸n en Python para dividir un dataset (X, y) en conjuntos de entrenamiento y prueba usando Scikit-learn (test_size=0.3):",
7
  "completion": "from sklearn.model_selection import train_test_split\n\ndef dividir_datos(X, y):\n X_train, X_test, y_train, y_test = train_test_split(\n X, y, test_size=0.3, random_state=42\n )\n return X_train, X_test, y_train, y_test\n"
@@ -19,9 +16,6 @@
19
  "completion": "import pandas as pd\n\ndf = pd.read_csv('datos_ia.csv')\nprint(df.head())\n"
20
  },
21
 
22
- // =================================================================
23
- // 馃 2. DEEP LEARNING: PYTORCH (REDES NEURONALES)
24
- // =================================================================
25
  {
26
  "prompt": "Clase en PyTorch que define un m贸dulo de Convoluci贸n (Conv2d) seguido de una funci贸n de activaci贸n ReLU:",
27
  "completion": "import torch.nn as nn\n\nclass BloqueConv(nn.Module):\n def __init__(self, in_c, out_c):\n super(BloqueConv, self).__init__()\n self.conv = nn.Conv2d(in_c, out_c, kernel_size=3, padding=1)\n self.relu = nn.ReLU()\n\n def forward(self, x):\n return self.relu(self.conv(x))\n"
@@ -31,13 +25,10 @@
31
  "completion": "import torch.nn.init as init\n\ndef inicializar_pesos(m):\n if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):\n init.xavier_uniform_(m.weight.data)\n if m.bias is not None:\n init.constant_(m.bias.data, 0)\n"
32
  },
33
  {
34
- "prompt": "# Configuraci贸n del ciclo de entrenamiento PyTorch (Optimizer y Loss Function):\n",
35
  "completion": "import torch.optim as optim\nimport torch.nn as nn\n\ncriterion = nn.CrossEntropyLoss()\noptimizer = optim.Adam(model.parameters(), lr=0.001)\n"
36
  },
37
 
38
- // =================================================================
39
- // 馃 3. PRE-PROCESAMIENTO AVANZADO Y VISUALIZACI脫N
40
- // =================================================================
41
  {
42
  "prompt": "C贸digo Python/Matplotlib para mostrar la distribuci贸n de una caracter铆stica usando un histograma:",
43
  "completion": "import matplotlib.pyplot as plt\n\ndef mostrar_histograma(data, titulo):\n plt.figure(figsize=(8, 6))\n plt.hist(data, bins=30, alpha=0.7, color='skyblue', edgecolor='black')\n plt.title(titulo)\n plt.xlabel('Valor')\n plt.ylabel('Frecuencia')\n plt.grid(axis='y', alpha=0.5)\n plt.show()\n"
 
1
  [
 
 
 
2
  {
3
  "prompt": "Funci贸n en Python para dividir un dataset (X, y) en conjuntos de entrenamiento y prueba usando Scikit-learn (test_size=0.3):",
4
  "completion": "from sklearn.model_selection import train_test_split\n\ndef dividir_datos(X, y):\n X_train, X_test, y_train, y_test = train_test_split(\n X, y, test_size=0.3, random_state=42\n )\n return X_train, X_test, y_train, y_test\n"
 
16
  "completion": "import pandas as pd\n\ndf = pd.read_csv('datos_ia.csv')\nprint(df.head())\n"
17
  },
18
 
 
 
 
19
  {
20
  "prompt": "Clase en PyTorch que define un m贸dulo de Convoluci贸n (Conv2d) seguido de una funci贸n de activaci贸n ReLU:",
21
  "completion": "import torch.nn as nn\n\nclass BloqueConv(nn.Module):\n def __init__(self, in_c, out_c):\n super(BloqueConv, self).__init__()\n self.conv = nn.Conv2d(in_c, out_c, kernel_size=3, padding=1)\n self.relu = nn.ReLU()\n\n def forward(self, x):\n return self.relu(self.conv(x))\n"
 
25
  "completion": "import torch.nn.init as init\n\ndef inicializar_pesos(m):\n if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):\n init.xavier_uniform_(m.weight.data)\n if m.bias is not None:\n init.constant_(m.bias.data, 0)\n"
26
  },
27
  {
28
+ "prompt": "Configuraci贸n del ciclo de entrenamiento PyTorch (Optimizer y Loss Function):",
29
  "completion": "import torch.optim as optim\nimport torch.nn as nn\n\ncriterion = nn.CrossEntropyLoss()\noptimizer = optim.Adam(model.parameters(), lr=0.001)\n"
30
  },
31
 
 
 
 
32
  {
33
  "prompt": "C贸digo Python/Matplotlib para mostrar la distribuci贸n de una caracter铆stica usando un histograma:",
34
  "completion": "import matplotlib.pyplot as plt\n\ndef mostrar_histograma(data, titulo):\n plt.figure(figsize=(8, 6))\n plt.hist(data, bins=30, alpha=0.7, color='skyblue', edgecolor='black')\n plt.title(titulo)\n plt.xlabel('Valor')\n plt.ylabel('Frecuencia')\n plt.grid(axis='y', alpha=0.5)\n plt.show()\n"