Spaces:
Runtime error
Runtime error
Update tu_dataset.json
Browse files- tu_dataset.json +1 -10
tu_dataset.json
CHANGED
|
@@ -1,7 +1,4 @@
|
|
| 1 |
[
|
| 2 |
-
// =================================================================
|
| 3 |
-
// 馃 1. INTELIGENCIA ARTIFICIAL: MANEJO DE DATOS Y SKLEARN B脕SICO
|
| 4 |
-
// =================================================================
|
| 5 |
{
|
| 6 |
"prompt": "Funci贸n en Python para dividir un dataset (X, y) en conjuntos de entrenamiento y prueba usando Scikit-learn (test_size=0.3):",
|
| 7 |
"completion": "from sklearn.model_selection import train_test_split\n\ndef dividir_datos(X, y):\n X_train, X_test, y_train, y_test = train_test_split(\n X, y, test_size=0.3, random_state=42\n )\n return X_train, X_test, y_train, y_test\n"
|
|
@@ -19,9 +16,6 @@
|
|
| 19 |
"completion": "import pandas as pd\n\ndf = pd.read_csv('datos_ia.csv')\nprint(df.head())\n"
|
| 20 |
},
|
| 21 |
|
| 22 |
-
// =================================================================
|
| 23 |
-
// 馃 2. DEEP LEARNING: PYTORCH (REDES NEURONALES)
|
| 24 |
-
// =================================================================
|
| 25 |
{
|
| 26 |
"prompt": "Clase en PyTorch que define un m贸dulo de Convoluci贸n (Conv2d) seguido de una funci贸n de activaci贸n ReLU:",
|
| 27 |
"completion": "import torch.nn as nn\n\nclass BloqueConv(nn.Module):\n def __init__(self, in_c, out_c):\n super(BloqueConv, self).__init__()\n self.conv = nn.Conv2d(in_c, out_c, kernel_size=3, padding=1)\n self.relu = nn.ReLU()\n\n def forward(self, x):\n return self.relu(self.conv(x))\n"
|
|
@@ -31,13 +25,10 @@
|
|
| 31 |
"completion": "import torch.nn.init as init\n\ndef inicializar_pesos(m):\n if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):\n init.xavier_uniform_(m.weight.data)\n if m.bias is not None:\n init.constant_(m.bias.data, 0)\n"
|
| 32 |
},
|
| 33 |
{
|
| 34 |
-
"prompt": "
|
| 35 |
"completion": "import torch.optim as optim\nimport torch.nn as nn\n\ncriterion = nn.CrossEntropyLoss()\noptimizer = optim.Adam(model.parameters(), lr=0.001)\n"
|
| 36 |
},
|
| 37 |
|
| 38 |
-
// =================================================================
|
| 39 |
-
// 馃 3. PRE-PROCESAMIENTO AVANZADO Y VISUALIZACI脫N
|
| 40 |
-
// =================================================================
|
| 41 |
{
|
| 42 |
"prompt": "C贸digo Python/Matplotlib para mostrar la distribuci贸n de una caracter铆stica usando un histograma:",
|
| 43 |
"completion": "import matplotlib.pyplot as plt\n\ndef mostrar_histograma(data, titulo):\n plt.figure(figsize=(8, 6))\n plt.hist(data, bins=30, alpha=0.7, color='skyblue', edgecolor='black')\n plt.title(titulo)\n plt.xlabel('Valor')\n plt.ylabel('Frecuencia')\n plt.grid(axis='y', alpha=0.5)\n plt.show()\n"
|
|
|
|
| 1 |
[
|
|
|
|
|
|
|
|
|
|
| 2 |
{
|
| 3 |
"prompt": "Funci贸n en Python para dividir un dataset (X, y) en conjuntos de entrenamiento y prueba usando Scikit-learn (test_size=0.3):",
|
| 4 |
"completion": "from sklearn.model_selection import train_test_split\n\ndef dividir_datos(X, y):\n X_train, X_test, y_train, y_test = train_test_split(\n X, y, test_size=0.3, random_state=42\n )\n return X_train, X_test, y_train, y_test\n"
|
|
|
|
| 16 |
"completion": "import pandas as pd\n\ndf = pd.read_csv('datos_ia.csv')\nprint(df.head())\n"
|
| 17 |
},
|
| 18 |
|
|
|
|
|
|
|
|
|
|
| 19 |
{
|
| 20 |
"prompt": "Clase en PyTorch que define un m贸dulo de Convoluci贸n (Conv2d) seguido de una funci贸n de activaci贸n ReLU:",
|
| 21 |
"completion": "import torch.nn as nn\n\nclass BloqueConv(nn.Module):\n def __init__(self, in_c, out_c):\n super(BloqueConv, self).__init__()\n self.conv = nn.Conv2d(in_c, out_c, kernel_size=3, padding=1)\n self.relu = nn.ReLU()\n\n def forward(self, x):\n return self.relu(self.conv(x))\n"
|
|
|
|
| 25 |
"completion": "import torch.nn.init as init\n\ndef inicializar_pesos(m):\n if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):\n init.xavier_uniform_(m.weight.data)\n if m.bias is not None:\n init.constant_(m.bias.data, 0)\n"
|
| 26 |
},
|
| 27 |
{
|
| 28 |
+
"prompt": "Configuraci贸n del ciclo de entrenamiento PyTorch (Optimizer y Loss Function):",
|
| 29 |
"completion": "import torch.optim as optim\nimport torch.nn as nn\n\ncriterion = nn.CrossEntropyLoss()\noptimizer = optim.Adam(model.parameters(), lr=0.001)\n"
|
| 30 |
},
|
| 31 |
|
|
|
|
|
|
|
|
|
|
| 32 |
{
|
| 33 |
"prompt": "C贸digo Python/Matplotlib para mostrar la distribuci贸n de una caracter铆stica usando un histograma:",
|
| 34 |
"completion": "import matplotlib.pyplot as plt\n\ndef mostrar_histograma(data, titulo):\n plt.figure(figsize=(8, 6))\n plt.hist(data, bins=30, alpha=0.7, color='skyblue', edgecolor='black')\n plt.title(titulo)\n plt.xlabel('Valor')\n plt.ylabel('Frecuencia')\n plt.grid(axis='y', alpha=0.5)\n plt.show()\n"
|