Andreyalth
commited on
Commit
•
40a86aa
1
Parent(s):
7ce535b
agregar archivos
Browse files- interfaz.py +76 -0
- requirements.txt +4 -0
interfaz.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from nemo.collections.asr.models import EncDecSpeakerLabelModel
|
4 |
+
import json
|
5 |
+
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
|
7 |
+
|
8 |
+
THRESHOLD = 0.60
|
9 |
+
|
10 |
+
model_name = "nvidia/speakerverification_en_titanet_large"
|
11 |
+
model = EncDecSpeakerLabelModel.from_pretrained(model_name).to(device)
|
12 |
+
|
13 |
+
def create_voice_print(audio):
|
14 |
+
if not audio:
|
15 |
+
return json.dumps({ "error": "no se proporciono un audio"})
|
16 |
+
|
17 |
+
embs1 = model.get_embedding(audio).squeeze()
|
18 |
+
|
19 |
+
X = embs1 / torch.linalg.norm(embs1)
|
20 |
+
|
21 |
+
# return X.tolist()
|
22 |
+
return X
|
23 |
+
|
24 |
+
def compare_voice_print(X, Y):
|
25 |
+
# Score
|
26 |
+
similarity_score = torch.dot(X, Y) / ((torch.dot(X, X) * torch.dot(Y, Y)) ** 0.5)
|
27 |
+
similarity_score = (similarity_score + 1) / 2
|
28 |
+
return similarity_score.item()
|
29 |
+
|
30 |
+
# encontrar como ejecutar la huella de voz
|
31 |
+
def find_matches(file, voice_print):
|
32 |
+
matches = []
|
33 |
+
if not file:
|
34 |
+
return json.dumps({"error": "No se proporcionó un archivo JSON"})
|
35 |
+
|
36 |
+
try:
|
37 |
+
|
38 |
+
json_content = json.load(open(file))
|
39 |
+
except json.JSONDecodeError:
|
40 |
+
return json.dumps({"error": "El archivo JSON no es válido"})
|
41 |
+
|
42 |
+
data = json_content.get("data", [])
|
43 |
+
|
44 |
+
# Convertir a tensor
|
45 |
+
voice_print = torch.tensor(json.loads(voice_print))
|
46 |
+
|
47 |
+
for speaker in data:
|
48 |
+
speaker_voice_print = torch.tensor(json.loads(speaker['voice_print']))
|
49 |
+
# speaker_voice_print = eval(speaker['voice_print'])
|
50 |
+
similarity_score = compare_voice_print(voice_print, speaker_voice_print)
|
51 |
+
print(similarity_score)
|
52 |
+
if similarity_score >= THRESHOLD:
|
53 |
+
matches.append({ "speaker": speaker, "similarity_score": similarity_score })
|
54 |
+
|
55 |
+
matches.sort(key=lambda match: match['similarity_score'], reverse=True)
|
56 |
+
return matches[:3]
|
57 |
+
|
58 |
+
|
59 |
+
voice_print_maker = gr.Interface(
|
60 |
+
fn=create_voice_print,
|
61 |
+
inputs=[gr.Audio(type="filepath")],
|
62 |
+
outputs=gr.JSON(),
|
63 |
+
)
|
64 |
+
|
65 |
+
voice_prints_loader = gr.Interface(
|
66 |
+
fn=find_matches,
|
67 |
+
inputs=[
|
68 |
+
gr.File(type="filepath", label="Upload JSON file"),
|
69 |
+
gr.TextArea()
|
70 |
+
],
|
71 |
+
outputs=gr.JSON(),
|
72 |
+
)
|
73 |
+
|
74 |
+
demo = gr.TabbedInterface([voice_print_maker, voice_prints_loader], ["app", "loader"])
|
75 |
+
|
76 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.29.0
|
2 |
+
torch==2.4.0
|
3 |
+
nemo_toolkit==1.23.0
|
4 |
+
huggingface-hub==0.23.2
|