Spaces:
Runtime error
Runtime error
AndrewNanu-app
commited on
Commit
β’
808736f
1
Parent(s):
68363f6
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
import gradio as gr
|
5 |
+
from datasets import Dataset, DatasetDict
|
6 |
+
from huggingface_hub import HfApi, HfFolder
|
7 |
+
|
8 |
+
# Generate a synthetic dataset
|
9 |
+
def synthesize_dataset(file_path):
|
10 |
+
np.random.seed(42)
|
11 |
+
data = {
|
12 |
+
'title': [f'Place {i}' for i in range(100)],
|
13 |
+
'latitude': np.random.uniform(low=32.0, high=36.0, size=100),
|
14 |
+
'longitude': np.random.uniform(low=-114.0, high=-110.0, size=100),
|
15 |
+
'info': [f'Info {i}' for i in range(100)]
|
16 |
+
}
|
17 |
+
df = pd.DataFrame(data)
|
18 |
+
df.to_csv(file_path, index=False)
|
19 |
+
return df
|
20 |
+
|
21 |
+
class DataLoader:
|
22 |
+
"""
|
23 |
+
Class to handle loading of datasets.
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, file_path: str):
|
27 |
+
"""
|
28 |
+
Initialize with the path to the dataset file.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
file_path (str): Path to the CSV dataset file.
|
32 |
+
"""
|
33 |
+
self.file_path = file_path
|
34 |
+
|
35 |
+
def load(self) -> pd.DataFrame:
|
36 |
+
"""
|
37 |
+
Load the dataset from the CSV file.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
pd.DataFrame: Loaded dataset as a pandas DataFrame.
|
41 |
+
"""
|
42 |
+
return pd.read_csv(self.file_path)
|
43 |
+
|
44 |
+
class MapVisualizer:
|
45 |
+
"""
|
46 |
+
Class to handle creation of map visualizations.
|
47 |
+
"""
|
48 |
+
|
49 |
+
def __init__(self, df: pd.DataFrame):
|
50 |
+
"""
|
51 |
+
Initialize with a DataFrame.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
df (pd.DataFrame): DataFrame containing the data to visualize.
|
55 |
+
"""
|
56 |
+
self.df = df
|
57 |
+
|
58 |
+
def create(self, filter_keyword: str) -> go.Figure:
|
59 |
+
"""
|
60 |
+
Create a map visualization filtered by a keyword.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
filter_keyword (str): Keyword to filter the dataset by 'title' column.
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
go.Figure: Plotly figure object with the map visualization.
|
67 |
+
"""
|
68 |
+
filtered_df = self.df[self.df['title'].str.contains(filter_keyword, case=False, na=False)]
|
69 |
+
|
70 |
+
fig = go.Figure(go.Scattermapbox(
|
71 |
+
lat=filtered_df['latitude'].tolist(),
|
72 |
+
lon=filtered_df['longitude'].tolist(),
|
73 |
+
mode='markers',
|
74 |
+
marker=go.scattermapbox.Marker(size=6),
|
75 |
+
text=filtered_df['info'].tolist(),
|
76 |
+
hoverinfo="text",
|
77 |
+
hovertemplate='<b>Info</b>: %{text}<br><b>Latitude</b>: %{lat}<br><b>Longitude</b>: %{lon}'
|
78 |
+
))
|
79 |
+
|
80 |
+
fig.update_layout(
|
81 |
+
mapbox_style="open-street-map",
|
82 |
+
hovermode='closest',
|
83 |
+
mapbox=dict(
|
84 |
+
bearing=0,
|
85 |
+
center=go.layout.mapbox.Center(
|
86 |
+
lat=filtered_df['latitude'].mean(),
|
87 |
+
lon=filtered_df['longitude'].mean()
|
88 |
+
),
|
89 |
+
pitch=0,
|
90 |
+
zoom=8
|
91 |
+
),
|
92 |
+
)
|
93 |
+
|
94 |
+
return fig
|
95 |
+
|
96 |
+
class GradioApp:
|
97 |
+
"""
|
98 |
+
Class to handle the Gradio application interface.
|
99 |
+
"""
|
100 |
+
|
101 |
+
def __init__(self, dataset_path: str):
|
102 |
+
"""
|
103 |
+
Initialize with the path to the dataset.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
dataset_path (str): Path to the dataset CSV file.
|
107 |
+
"""
|
108 |
+
self.data_loader = DataLoader(dataset_path)
|
109 |
+
self.df = self.data_loader.load()
|
110 |
+
self.map_visualizer = MapVisualizer(self.df)
|
111 |
+
|
112 |
+
def filter_map(self, keyword: str) -> go.Figure:
|
113 |
+
"""
|
114 |
+
Filter the map visualization by a keyword.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
keyword (str): Keyword to filter the dataset by 'title' column.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
go.Figure: Plotly figure object with the map visualization.
|
121 |
+
"""
|
122 |
+
return self.map_visualizer.create(keyword)
|
123 |
+
|
124 |
+
def launch(self):
|
125 |
+
"""
|
126 |
+
Launch the Gradio application.
|
127 |
+
"""
|
128 |
+
with gr.Blocks() as demo:
|
129 |
+
gr.Markdown("# π Real-Time Map Plot")
|
130 |
+
keyword_input = gr.Textbox(label="Keyword to Filter", placeholder="Enter keyword")
|
131 |
+
map_output = gr.Plot()
|
132 |
+
filter_button = gr.Button("Update Map")
|
133 |
+
|
134 |
+
filter_button.click(self.filter_map, inputs=[keyword_input], outputs=map_output)
|
135 |
+
|
136 |
+
demo.launch(share=True)
|
137 |
+
|
138 |
+
class HuggingFaceIntegration:
|
139 |
+
"""
|
140 |
+
Class to handle interaction with Hugging Face Hub.
|
141 |
+
"""
|
142 |
+
|
143 |
+
def __init__(self):
|
144 |
+
"""
|
145 |
+
Initialize Hugging Face API.
|
146 |
+
"""
|
147 |
+
self.api = HfApi()
|
148 |
+
|
149 |
+
def upload_dataset(self, df: pd.DataFrame, repo_id: str):
|
150 |
+
"""
|
151 |
+
Upload dataset to Hugging Face Hub.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
df (pd.DataFrame): DataFrame containing the dataset.
|
155 |
+
repo_id (str): Hugging Face repository ID.
|
156 |
+
"""
|
157 |
+
dataset = Dataset.from_pandas(df)
|
158 |
+
dataset_dict = DatasetDict({"train": dataset})
|
159 |
+
dataset_dict.push_to_hub(repo_id)
|
160 |
+
|
161 |
+
def load_dataset(self, repo_id: str) -> pd.DataFrame:
|
162 |
+
"""
|
163 |
+
Load dataset from Hugging Face Hub.
|
164 |
+
|
165 |
+
Args:
|
166 |
+
repo_id (str): Hugging Face repository ID.
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
pd.DataFrame: Loaded dataset as a pandas DataFrame.
|
170 |
+
"""
|
171 |
+
dataset = Dataset.from_hub(repo_id, split="train")
|
172 |
+
return dataset.to_pandas()
|
173 |
+
|
174 |
+
# Synthesize a dataset
|
175 |
+
synthesize_dataset('/content/synthetic_dataset.csv')
|
176 |
+
|
177 |
+
# Create and launch the Gradio app
|
178 |
+
if __name__ == "__main__":
|
179 |
+
app = GradioApp('/content/synthetic_dataset.csv')
|
180 |
+
app.launch()
|