Spaces:
Sleeping
Sleeping
AndresZarta
commited on
Commit
•
f512a51
1
Parent(s):
8db830a
SAM model
Browse files- app.py +33 -20
- requirements.txt +6 -0
app.py
CHANGED
@@ -1,50 +1,61 @@
|
|
|
|
|
|
1 |
from shiny import App, render, ui
|
2 |
-
from shiny.ui import output_image, input_file, panel_main, panel_sidebar, layout_sidebar
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
import numpy as np
|
5 |
-
import torch # Assuming the model is a PyTorch model
|
6 |
from PIL import Image
|
7 |
import io
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
model.eval()
|
12 |
|
13 |
def predict(image_file):
|
14 |
-
# Open image
|
15 |
image = Image.open(image_file)
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
with torch.no_grad():
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
return segmentation
|
24 |
|
25 |
def server(input, output, session):
|
26 |
@output
|
27 |
@render.image
|
28 |
def segmented_image():
|
29 |
-
|
30 |
-
if not input.image_file:
|
31 |
return None
|
32 |
|
33 |
-
#
|
34 |
uploaded_file = input.image_file()[0]
|
35 |
segmentation = predict(uploaded_file)
|
36 |
|
37 |
-
#
|
38 |
plt.imshow(segmentation, cmap='gray')
|
39 |
plt.axis('off')
|
40 |
|
41 |
-
# Save to buffer and return
|
42 |
buf = io.BytesIO()
|
43 |
plt.savefig(buf, format='png')
|
44 |
buf.seek(0)
|
45 |
return buf
|
46 |
|
47 |
-
print("Creating app UI")
|
48 |
app_ui = ui.page_fluid(
|
49 |
layout_sidebar(
|
50 |
panel_sidebar(
|
@@ -55,6 +66,8 @@ app_ui = ui.page_fluid(
|
|
55 |
),
|
56 |
)
|
57 |
)
|
58 |
-
|
59 |
app = App(app_ui, server)
|
60 |
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import SamConfig, SamProcessor, SamModel
|
3 |
from shiny import App, render, ui
|
|
|
|
|
4 |
import numpy as np
|
|
|
5 |
from PIL import Image
|
6 |
import io
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
# Load the model configuration
|
10 |
+
model_config = SamConfig.from_pretrained("facebook/sam-vit-base")
|
11 |
+
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
12 |
+
|
13 |
+
# Create an instance of the model architecture with the loaded configuration
|
14 |
+
my_model = SamModel(config=model_config)
|
15 |
+
|
16 |
+
# Update the model by loading the weights from a saved file
|
17 |
+
my_model.load_state_dict(torch.load("models/model_checkpoint_trained_on_train.pth"))
|
18 |
|
19 |
+
# Set model to evaluation mode
|
20 |
+
my_model.eval()
|
|
|
21 |
|
22 |
def predict(image_file):
|
23 |
+
# Open and preprocess the image
|
24 |
image = Image.open(image_file)
|
25 |
+
image_array = np.array(image)
|
26 |
+
|
27 |
+
# Process the image
|
28 |
+
inputs = processor(images=image_array, return_tensors="pt")
|
29 |
+
|
30 |
+
# Make a prediction with the model
|
31 |
with torch.no_grad():
|
32 |
+
outputs = my_model(**inputs)
|
33 |
+
|
34 |
+
# Extract the mask or segmentation map
|
35 |
+
segmentation = outputs[0].squeeze().numpy() # Adjust to extract necessary outputs
|
36 |
+
|
37 |
return segmentation
|
38 |
|
39 |
def server(input, output, session):
|
40 |
@output
|
41 |
@render.image
|
42 |
def segmented_image():
|
43 |
+
if not input.image_file():
|
|
|
44 |
return None
|
45 |
|
46 |
+
# Get the uploaded file
|
47 |
uploaded_file = input.image_file()[0]
|
48 |
segmentation = predict(uploaded_file)
|
49 |
|
50 |
+
# Visualize the segmentation
|
51 |
plt.imshow(segmentation, cmap='gray')
|
52 |
plt.axis('off')
|
53 |
|
|
|
54 |
buf = io.BytesIO()
|
55 |
plt.savefig(buf, format='png')
|
56 |
buf.seek(0)
|
57 |
return buf
|
58 |
|
|
|
59 |
app_ui = ui.page_fluid(
|
60 |
layout_sidebar(
|
61 |
panel_sidebar(
|
|
|
66 |
),
|
67 |
)
|
68 |
)
|
69 |
+
|
70 |
app = App(app_ui, server)
|
71 |
|
72 |
+
if __name__ == "__main__":
|
73 |
+
app.run()
|
requirements.txt
CHANGED
@@ -3,3 +3,9 @@ torch
|
|
3 |
numpy
|
4 |
pillow
|
5 |
matplotlib
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
numpy
|
4 |
pillow
|
5 |
matplotlib
|
6 |
+
segment-geospatial
|
7 |
+
groundingdino-py
|
8 |
+
leafmap
|
9 |
+
localtileserver
|
10 |
+
datasets
|
11 |
+
transformers
|