Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.linear_model import LinearRegression
|
5 |
+
import random
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
st.title('Oracle Function Simulation')
|
10 |
+
|
11 |
+
# Oracle function
|
12 |
+
def oracle(task_complexity, ether_price, active_users, solved_tasks, unsolved_tasks, user_kpis, service_level_agreements):
|
13 |
+
weights = [random.random() for _ in range(7)]
|
14 |
+
return (
|
15 |
+
weights[0] * task_complexity
|
16 |
+
+ weights[1] * ether_price
|
17 |
+
+ weights[2] * active_users
|
18 |
+
+ weights[3] * solved_tasks
|
19 |
+
+ weights[4] * unsolved_tasks
|
20 |
+
+ weights[5] * user_kpis
|
21 |
+
+ weights[6] * service_level_agreements
|
22 |
+
)
|
23 |
+
|
24 |
+
# Get historical data for Ether
|
25 |
+
url = "https://api.coingecko.com/api/v3/coins/ethereum/market_chart"
|
26 |
+
params = {"vs_currency": "usd", "days": "1095"} # 1095 days is approximately 3 years
|
27 |
+
response = requests.get(url, params=params)
|
28 |
+
data = response.json()
|
29 |
+
|
30 |
+
# Convert the price data to a Pandas DataFrame
|
31 |
+
df = pd.DataFrame(data['prices'], columns=['time', 'price'])
|
32 |
+
df['time'] = pd.to_datetime(df['time'], unit='ms')
|
33 |
+
|
34 |
+
# Generate mock data for the oracle function and simulate the last 3 years
|
35 |
+
oracle_outputs = []
|
36 |
+
variables = {'task_complexity': [], 'ether_price': [], 'active_users': [], 'solved_tasks': [], 'unsolved_tasks': [], 'user_kpis': [], 'service_level_agreements': []}
|
37 |
+
for _ in range(len(df)):
|
38 |
+
task_complexity = random.randint(1, 10)
|
39 |
+
active_users = random.randint(1, 10000)
|
40 |
+
solved_tasks = random.randint(1, 1000)
|
41 |
+
unsolved_tasks = random.randint(1, 1000)
|
42 |
+
user_kpis = random.uniform(0.1, 1)
|
43 |
+
service_level_agreements = random.uniform(0.1, 1)
|
44 |
+
ether_price = df.iloc[_]['price']
|
45 |
+
oracle_outputs.append(oracle(task_complexity, ether_price, active_users, solved_tasks, unsolved_tasks, user_kpis, service_level_agreements))
|
46 |
+
variables['task_complexity'].append(task_complexity)
|
47 |
+
variables['ether_price'].append(ether_price)
|
48 |
+
variables['active_users'].append(active_users)
|
49 |
+
variables['solved_tasks'].append(solved_tasks)
|
50 |
+
variables['unsolved_tasks'].append(unsolved_tasks)
|
51 |
+
variables['user_kpis'].append(user_kpis)
|
52 |
+
variables['service_level_agreements'].append(service_level_agreements)
|
53 |
+
|
54 |
+
# Train a linear regression model to adjust the oracle output based on Ether price
|
55 |
+
model = LinearRegression()
|
56 |
+
model.fit(df['price'].values.reshape(-1, 1), oracle_outputs)
|
57 |
+
|
58 |
+
# Resample the price data to monthly data and calculate average price for each month
|
59 |
+
df['oracle_output'] = oracle_outputs
|
60 |
+
df.set_index('time', inplace=True)
|
61 |
+
monthly_df = df.resample('M').mean()
|
62 |
+
|
63 |
+
# Predict the oracle output for each average monthly price
|
64 |
+
monthly_df['predicted_oracle_output'] = model.predict(monthly_df['price'].values.reshape(-1, 1))
|
65 |
+
|
66 |
+
# Display a line chart of the predicted oracle output and Ether price over time
|
67 |
+
st.subheader('Predicted Oracle Output and Ether Price Over Time')
|
68 |
+
st.line_chart(monthly_df[['predicted_oracle_output', 'price']])
|
69 |
+
|
70 |
+
# Display a scatter plot with linear relation between Predicted Oracle output and Ether price
|
71 |
+
st.subheader('Predicted Oracle output vs Ether price')
|
72 |
+
plt.figure(figsize=(8,6))
|
73 |
+
plt.scatter(monthly_df['predicted_oracle_output'], monthly_df['price'])
|
74 |
+
m, b = np.polyfit(monthly_df['predicted_oracle_output'], monthly_df['price'], 1)
|
75 |
+
plt.plot(monthly_df['predicted_oracle_output'], m*monthly_df['predicted_oracle_output'] + b, color='red')
|
76 |
+
plt.xlabel('Predicted Oracle Output')
|
77 |
+
plt.ylabel('Ether Price')
|
78 |
+
st.pyplot(plt)
|
79 |
+
|
80 |
+
# Display tables showing average values of the variables over time
|
81 |
+
st.subheader('Average Values of the Variables Over Time')
|
82 |
+
for var in variables:
|
83 |
+
st.write(f"{var}: {sum(variables[var])/len(variables[var])}")
|
84 |
+
|