Spaces:
Runtime error
Runtime error
import torch | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers import AutoencoderKL, DDIMScheduler, DDIMInverseScheduler, DPMSolverMultistepScheduler | |
from .unet_2d_condition import UNet2DConditionModel | |
from easydict import EasyDict | |
import numpy as np | |
# For compatibility | |
from utils.latents import get_unscaled_latents, get_scaled_latents, blend_latents | |
from utils import torch_device | |
def load_sd(key="runwayml/stable-diffusion-v1-5", use_fp16=False, load_inverse_scheduler=True): | |
""" | |
Keys: | |
key = "CompVis/stable-diffusion-v1-4" | |
key = "runwayml/stable-diffusion-v1-5" | |
key = "stabilityai/stable-diffusion-2-1-base" | |
Unpack with: | |
``` | |
model_dict = load_sd(key=key, use_fp16=use_fp16) | |
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict.scheduler, model_dict.dtype | |
``` | |
use_fp16: fp16 might have degraded performance | |
""" | |
# run final results in fp32 | |
if use_fp16: | |
dtype = torch.float16 | |
revision = "fp16" | |
else: | |
dtype = torch.float | |
revision = "main" | |
vae = AutoencoderKL.from_pretrained(key, subfolder="vae", revision=revision, torch_dtype=dtype).to(torch_device) | |
tokenizer = CLIPTokenizer.from_pretrained(key, subfolder="tokenizer", revision=revision, torch_dtype=dtype) | |
text_encoder = CLIPTextModel.from_pretrained(key, subfolder="text_encoder", revision=revision, torch_dtype=dtype).to(torch_device) | |
unet = UNet2DConditionModel.from_pretrained(key, subfolder="unet", revision=revision, torch_dtype=dtype).to(torch_device) | |
dpm_scheduler = DPMSolverMultistepScheduler.from_pretrained(key, subfolder="scheduler", revision=revision, torch_dtype=dtype) | |
scheduler = DDIMScheduler.from_pretrained(key, subfolder="scheduler", revision=revision, torch_dtype=dtype) | |
model_dict = EasyDict(vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, dpm_scheduler=dpm_scheduler, dtype=dtype) | |
if load_inverse_scheduler: | |
inverse_scheduler = DDIMInverseScheduler.from_config(scheduler.config) | |
model_dict.inverse_scheduler = inverse_scheduler | |
return model_dict | |
def encode_prompts(tokenizer, text_encoder, prompts, negative_prompt="", return_full_only=False, one_uncond_input_only=False): | |
if negative_prompt == "": | |
print("Note that negative_prompt is an empty string") | |
text_input = tokenizer( | |
prompts, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt" | |
) | |
max_length = text_input.input_ids.shape[-1] | |
if one_uncond_input_only: | |
num_uncond_input = 1 | |
else: | |
num_uncond_input = len(prompts) | |
uncond_input = tokenizer([negative_prompt] * num_uncond_input, padding="max_length", max_length=max_length, return_tensors="pt") | |
with torch.no_grad(): | |
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] | |
cond_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0] | |
if one_uncond_input_only: | |
return uncond_embeddings, cond_embeddings | |
text_embeddings = torch.cat([uncond_embeddings, cond_embeddings]) | |
if return_full_only: | |
return text_embeddings | |
return text_embeddings, uncond_embeddings, cond_embeddings | |
def process_input_embeddings(input_embeddings): | |
assert isinstance(input_embeddings, (tuple, list)) | |
if len(input_embeddings) == 3: | |
# input_embeddings: text_embeddings, uncond_embeddings, cond_embeddings | |
# Assume `uncond_embeddings` is full (has batch size the same as cond_embeddings) | |
_, uncond_embeddings, cond_embeddings = input_embeddings | |
assert uncond_embeddings.shape[0] == cond_embeddings.shape[0], f"{uncond_embeddings.shape[0]} != {cond_embeddings.shape[0]}" | |
return input_embeddings | |
elif len(input_embeddings) == 2: | |
# input_embeddings: uncond_embeddings, cond_embeddings | |
# uncond_embeddings may have only one item | |
uncond_embeddings, cond_embeddings = input_embeddings | |
if uncond_embeddings.shape[0] == 1: | |
uncond_embeddings = uncond_embeddings.expand(cond_embeddings.shape) | |
# We follow the convention: negative (unconditional) prompt comes first | |
text_embeddings = torch.cat((uncond_embeddings, cond_embeddings), dim=0) | |
return text_embeddings, uncond_embeddings, cond_embeddings | |
else: | |
raise ValueError(f"input_embeddings length: {len(input_embeddings)}") | |