restructure dir
Browse files- app.py +3 -3
- src/abstractive_summarizer.py +0 -52
- src/utils.py → utils.py +37 -0
app.py
CHANGED
@@ -5,8 +5,9 @@ from transformers import AutoTokenizer, pipeline
|
|
5 |
|
6 |
# local modules
|
7 |
from extractive_summarizer.model_processors import Summarizer
|
8 |
-
from
|
9 |
-
|
|
|
10 |
preprocess_text_for_abstractive_summarization,
|
11 |
)
|
12 |
|
@@ -85,7 +86,6 @@ if __name__ == "__main__":
|
|
85 |
text_to_summarize = preprocess_text_for_abstractive_summarization(
|
86 |
tokenizer=abs_tokenizer, text=clean_txt
|
87 |
)
|
88 |
-
print(text_to_summarize)
|
89 |
tmp_sum = abs_summarizer(
|
90 |
text_to_summarize,
|
91 |
max_length=abs_max_length,
|
|
|
5 |
|
6 |
# local modules
|
7 |
from extractive_summarizer.model_processors import Summarizer
|
8 |
+
from utils import (
|
9 |
+
clean_text,
|
10 |
+
fetch_article_text,
|
11 |
preprocess_text_for_abstractive_summarization,
|
12 |
)
|
13 |
|
|
|
86 |
text_to_summarize = preprocess_text_for_abstractive_summarization(
|
87 |
tokenizer=abs_tokenizer, text=clean_txt
|
88 |
)
|
|
|
89 |
tmp_sum = abs_summarizer(
|
90 |
text_to_summarize,
|
91 |
max_length=abs_max_length,
|
src/abstractive_summarizer.py
DELETED
@@ -1,52 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from nltk.tokenize import sent_tokenize
|
3 |
-
from transformers import T5Tokenizer
|
4 |
-
|
5 |
-
|
6 |
-
def abstractive_summarizer(tokenizer, model, text):
|
7 |
-
# inputs to the model
|
8 |
-
inputs = [tokenizer(f"summarize: {chunk}", return_tensors="pt") for chunk in text]
|
9 |
-
abs_summarized_text = []
|
10 |
-
for input in inputs:
|
11 |
-
output = model.generate(input["input_ids"])
|
12 |
-
tmp_sum = tokenizer.decode(output[0], skip_special_tokens=True)
|
13 |
-
abs_summarized_text.append(tmp_sum)
|
14 |
-
|
15 |
-
abs_summarized_text = " ".join([summ for summ in abs_summarized_text])
|
16 |
-
return abs_summarized_text
|
17 |
-
|
18 |
-
|
19 |
-
def preprocess_text_for_abstractive_summarization(tokenizer, text):
|
20 |
-
sentences = sent_tokenize(text)
|
21 |
-
|
22 |
-
# initialize
|
23 |
-
length = 0
|
24 |
-
chunk = ""
|
25 |
-
chunks = []
|
26 |
-
count = -1
|
27 |
-
for sentence in sentences:
|
28 |
-
count += 1
|
29 |
-
combined_length = (
|
30 |
-
len(tokenizer.tokenize(sentence)) + length
|
31 |
-
) # add the no. of sentence tokens to the length counter
|
32 |
-
|
33 |
-
if combined_length <= tokenizer.max_len_single_sentence: # if it doesn't exceed
|
34 |
-
chunk += sentence + " " # add the sentence to the chunk
|
35 |
-
length = combined_length # update the length counter
|
36 |
-
|
37 |
-
# if it is the last sentence
|
38 |
-
if count == len(sentences) - 1:
|
39 |
-
chunks.append(chunk.strip()) # save the chunk
|
40 |
-
|
41 |
-
else:
|
42 |
-
chunks.append(chunk.strip()) # save the chunk
|
43 |
-
|
44 |
-
# reset
|
45 |
-
length = 0
|
46 |
-
chunk = ""
|
47 |
-
|
48 |
-
# take care of the overflow sentence
|
49 |
-
chunk += sentence + " "
|
50 |
-
length = len(tokenizer.tokenize(sentence))
|
51 |
-
|
52 |
-
return chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/utils.py → utils.py
RENAMED
@@ -1,6 +1,7 @@
|
|
1 |
import re
|
2 |
import requests
|
3 |
from bs4 import BeautifulSoup
|
|
|
4 |
|
5 |
emoji_pattern = re.compile(
|
6 |
"["
|
@@ -59,3 +60,39 @@ def fetch_article_text(url: str):
|
|
59 |
chunks[chunk_id] = " ".join(chunks[chunk_id])
|
60 |
|
61 |
return ARTICLE, chunks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import re
|
2 |
import requests
|
3 |
from bs4 import BeautifulSoup
|
4 |
+
from nltk.tokenize import sent_tokenize
|
5 |
|
6 |
emoji_pattern = re.compile(
|
7 |
"["
|
|
|
60 |
chunks[chunk_id] = " ".join(chunks[chunk_id])
|
61 |
|
62 |
return ARTICLE, chunks
|
63 |
+
|
64 |
+
|
65 |
+
def preprocess_text_for_abstractive_summarization(tokenizer, text):
|
66 |
+
sentences = sent_tokenize(text)
|
67 |
+
|
68 |
+
# initialize
|
69 |
+
length = 0
|
70 |
+
chunk = ""
|
71 |
+
chunks = []
|
72 |
+
count = -1
|
73 |
+
for sentence in sentences:
|
74 |
+
count += 1
|
75 |
+
combined_length = (
|
76 |
+
len(tokenizer.tokenize(sentence)) + length
|
77 |
+
) # add the no. of sentence tokens to the length counter
|
78 |
+
|
79 |
+
if combined_length <= tokenizer.max_len_single_sentence: # if it doesn't exceed
|
80 |
+
chunk += sentence + " " # add the sentence to the chunk
|
81 |
+
length = combined_length # update the length counter
|
82 |
+
|
83 |
+
# if it is the last sentence
|
84 |
+
if count == len(sentences) - 1:
|
85 |
+
chunks.append(chunk.strip()) # save the chunk
|
86 |
+
|
87 |
+
else:
|
88 |
+
chunks.append(chunk.strip()) # save the chunk
|
89 |
+
|
90 |
+
# reset
|
91 |
+
length = 0
|
92 |
+
chunk = ""
|
93 |
+
|
94 |
+
# take care of the overflow sentence
|
95 |
+
chunk += sentence + " "
|
96 |
+
length = len(tokenizer.tokenize(sentence))
|
97 |
+
|
98 |
+
return chunks
|