modularized code
Browse files- app.py +28 -34
- src/abstractive_summarizer.py +22 -0
- src/vanilla_summarizer.py +0 -0
app.py
CHANGED
@@ -1,35 +1,19 @@
|
|
1 |
import torch
|
2 |
import streamlit as st
|
3 |
-
from
|
4 |
-
from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config
|
5 |
-
|
6 |
-
def abstractive_summarizer(text : str, model):
|
7 |
-
tokenizer = T5Tokenizer.from_pretrained('t5-large')
|
8 |
-
device = torch.device('cpu')
|
9 |
-
preprocess_text = text.strip().replace("\n", "")
|
10 |
-
t5_prepared_text = "summarize: " + preprocess_text
|
11 |
-
tokenized_text = tokenizer.encode(t5_prepared_text, return_tensors="pt").to(device)
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
min_length=30,
|
18 |
-
max_length=100,
|
19 |
-
early_stopping=True)
|
20 |
-
abs_summarized_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
21 |
-
|
22 |
-
return abs_summarized_text
|
23 |
|
24 |
-
# @st.cache()
|
25 |
-
# def load_ext_model():
|
26 |
-
# model = Summarizer()
|
27 |
-
# return model
|
28 |
|
|
|
29 |
@st.cache()
|
30 |
def load_abs_model():
|
31 |
-
|
32 |
-
|
|
|
33 |
|
34 |
|
35 |
if __name__ == "__main__":
|
@@ -37,10 +21,14 @@ if __name__ == "__main__":
|
|
37 |
# Main Application
|
38 |
# ---------------------------------
|
39 |
st.title("Text Summarizer 📝")
|
40 |
-
summarize_type = st.sidebar.selectbox(
|
|
|
|
|
41 |
|
42 |
inp_text = st.text_input("Enter the text here")
|
43 |
|
|
|
|
|
44 |
# view summarized text (expander)
|
45 |
with st.expander("View input text"):
|
46 |
st.write(inp_text)
|
@@ -51,16 +39,22 @@ if __name__ == "__main__":
|
|
51 |
if summarize:
|
52 |
if summarize_type == "Extractive":
|
53 |
# extractive summarizer
|
54 |
-
|
55 |
-
with st.spinner(
|
|
|
|
|
56 |
ext_model = Summarizer()
|
57 |
summarized_text = ext_model(inp_text, num_sentences=5)
|
58 |
-
|
59 |
-
elif summarize_type == "Abstractive":
|
60 |
-
with st.spinner(text="Creating abstractive summary. This might take a few seconds ..."):
|
61 |
-
abs_model = load_abs_model()
|
62 |
-
summarized_text = abstractive_summarizer(inp_text, model=abs_model)
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
st.subheader("Summarized text")
|
66 |
st.info(summarized_text)
|
|
|
1 |
import torch
|
2 |
import streamlit as st
|
3 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# local modules
|
6 |
+
from extractive_summarizer.model_processors import Summarizer
|
7 |
+
from src.utils import clean_text
|
8 |
+
from src.abstractive_summarizer import abstractive_summarizer
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# abstractive summarizer model
|
12 |
@st.cache()
|
13 |
def load_abs_model():
|
14 |
+
tokenizer = T5Tokenizer.from_pretrained("t5-large")
|
15 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-base")
|
16 |
+
return tokenizer, model
|
17 |
|
18 |
|
19 |
if __name__ == "__main__":
|
|
|
21 |
# Main Application
|
22 |
# ---------------------------------
|
23 |
st.title("Text Summarizer 📝")
|
24 |
+
summarize_type = st.sidebar.selectbox(
|
25 |
+
"Summarization type", options=["Extractive", "Abstractive"]
|
26 |
+
)
|
27 |
|
28 |
inp_text = st.text_input("Enter the text here")
|
29 |
|
30 |
+
inp_text = clean_text(inp_text)
|
31 |
+
|
32 |
# view summarized text (expander)
|
33 |
with st.expander("View input text"):
|
34 |
st.write(inp_text)
|
|
|
39 |
if summarize:
|
40 |
if summarize_type == "Extractive":
|
41 |
# extractive summarizer
|
42 |
+
|
43 |
+
with st.spinner(
|
44 |
+
text="Creating extractive summary. This might take a few seconds ..."
|
45 |
+
):
|
46 |
ext_model = Summarizer()
|
47 |
summarized_text = ext_model(inp_text, num_sentences=5)
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
elif summarize_type == "Abstractive":
|
50 |
+
with st.spinner(
|
51 |
+
text="Creating abstractive summary. This might take a few seconds ..."
|
52 |
+
):
|
53 |
+
abs_tokenizer, abs_model = load_abs_model()
|
54 |
+
summarized_text = abstractive_summarizer(
|
55 |
+
abs_tokenizer, abs_model, inp_text
|
56 |
+
)
|
57 |
+
|
58 |
+
# final summarized output
|
59 |
st.subheader("Summarized text")
|
60 |
st.info(summarized_text)
|
src/abstractive_summarizer.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import T5Tokenizer
|
3 |
+
|
4 |
+
|
5 |
+
def abstractive_summarizer(tokenizer, model, text):
|
6 |
+
device = torch.device("cpu")
|
7 |
+
preprocess_text = text.strip().replace("\n", "")
|
8 |
+
t5_prepared_text = "summarize: " + preprocess_text
|
9 |
+
tokenized_text = tokenizer.encode(t5_prepared_text, return_tensors="pt").to(device)
|
10 |
+
|
11 |
+
# summmarize
|
12 |
+
summary_ids = model.generate(
|
13 |
+
tokenized_text,
|
14 |
+
num_beams=4,
|
15 |
+
no_repeat_ngram_size=2,
|
16 |
+
min_length=30,
|
17 |
+
max_length=100,
|
18 |
+
early_stopping=True,
|
19 |
+
)
|
20 |
+
abs_summarized_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
21 |
+
|
22 |
+
return abs_summarized_text
|
src/vanilla_summarizer.py
DELETED
File without changes
|