Spaces:
Runtime error
Runtime error
| # Ultralytics YOLO π, AGPL-3.0 license | |
| import os | |
| import re | |
| import shutil | |
| import socket | |
| import sys | |
| import tempfile | |
| from pathlib import Path | |
| from . import USER_CONFIG_DIR | |
| from .torch_utils import TORCH_1_9 | |
| def find_free_network_port() -> int: | |
| """Finds a free port on localhost. | |
| It is useful in single-node training when we don't want to connect to a real main node but have to set the | |
| `MASTER_PORT` environment variable. | |
| """ | |
| with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: | |
| s.bind(('127.0.0.1', 0)) | |
| return s.getsockname()[1] # port | |
| def generate_ddp_file(trainer): | |
| """Generates a DDP file and returns its file name.""" | |
| module, name = f'{trainer.__class__.__module__}.{trainer.__class__.__name__}'.rsplit('.', 1) | |
| content = f'''overrides = {vars(trainer.args)} \nif __name__ == "__main__": | |
| from {module} import {name} | |
| from ultralytics.yolo.utils import DEFAULT_CFG_DICT | |
| cfg = DEFAULT_CFG_DICT.copy() | |
| cfg.update(save_dir='') # handle the extra key 'save_dir' | |
| trainer = {name}(cfg=cfg, overrides=overrides) | |
| trainer.train()''' | |
| (USER_CONFIG_DIR / 'DDP').mkdir(exist_ok=True) | |
| with tempfile.NamedTemporaryFile(prefix='_temp_', | |
| suffix=f'{id(trainer)}.py', | |
| mode='w+', | |
| encoding='utf-8', | |
| dir=USER_CONFIG_DIR / 'DDP', | |
| delete=False) as file: | |
| file.write(content) | |
| return file.name | |
| def generate_ddp_command(world_size, trainer): | |
| """Generates and returns command for distributed training.""" | |
| import __main__ # noqa local import to avoid https://github.com/Lightning-AI/lightning/issues/15218 | |
| if not trainer.resume: | |
| shutil.rmtree(trainer.save_dir) # remove the save_dir | |
| file = str(Path(sys.argv[0]).resolve()) | |
| safe_pattern = re.compile(r'^[a-zA-Z0-9_. /\\-]{1,128}$') # allowed characters and maximum of 100 characters | |
| if not (safe_pattern.match(file) and Path(file).exists() and file.endswith('.py')): # using CLI | |
| file = generate_ddp_file(trainer) | |
| dist_cmd = 'torch.distributed.run' if TORCH_1_9 else 'torch.distributed.launch' | |
| port = find_free_network_port() | |
| cmd = [sys.executable, '-m', dist_cmd, '--nproc_per_node', f'{world_size}', '--master_port', f'{port}', file] | |
| return cmd, file | |
| def ddp_cleanup(trainer, file): | |
| """Delete temp file if created.""" | |
| if f'{id(trainer)}.py' in file: # if temp_file suffix in file | |
| os.remove(file) | |