Spaces:
Running
on
T4
Running
on
T4
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import numpy as np | |
import scipy | |
from scipy.spatial.distance import cdist | |
from .kalman_filter import chi2inv95 | |
try: | |
import lap # for linear_assignment | |
assert lap.__version__ # verify package is not directory | |
except (ImportError, AssertionError, AttributeError): | |
from ultralytics.yolo.utils.checks import check_requirements | |
check_requirements('lap>=0.4') # install | |
import lap | |
def merge_matches(m1, m2, shape): | |
"""Merge two sets of matches and return matched and unmatched indices.""" | |
O, P, Q = shape | |
m1 = np.asarray(m1) | |
m2 = np.asarray(m2) | |
M1 = scipy.sparse.coo_matrix((np.ones(len(m1)), (m1[:, 0], m1[:, 1])), shape=(O, P)) | |
M2 = scipy.sparse.coo_matrix((np.ones(len(m2)), (m2[:, 0], m2[:, 1])), shape=(P, Q)) | |
mask = M1 * M2 | |
match = mask.nonzero() | |
match = list(zip(match[0], match[1])) | |
unmatched_O = tuple(set(range(O)) - {i for i, j in match}) | |
unmatched_Q = tuple(set(range(Q)) - {j for i, j in match}) | |
return match, unmatched_O, unmatched_Q | |
def _indices_to_matches(cost_matrix, indices, thresh): | |
"""_indices_to_matches: Return matched and unmatched indices given a cost matrix, indices, and a threshold.""" | |
matched_cost = cost_matrix[tuple(zip(*indices))] | |
matched_mask = (matched_cost <= thresh) | |
matches = indices[matched_mask] | |
unmatched_a = tuple(set(range(cost_matrix.shape[0])) - set(matches[:, 0])) | |
unmatched_b = tuple(set(range(cost_matrix.shape[1])) - set(matches[:, 1])) | |
return matches, unmatched_a, unmatched_b | |
def linear_assignment(cost_matrix, thresh, use_lap=True): | |
"""Linear assignment implementations with scipy and lap.lapjv.""" | |
if cost_matrix.size == 0: | |
return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1])) | |
if use_lap: | |
_, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh) | |
matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0] | |
unmatched_a = np.where(x < 0)[0] | |
unmatched_b = np.where(y < 0)[0] | |
else: | |
# Scipy linear sum assignment is NOT working correctly, DO NOT USE | |
y, x = scipy.optimize.linear_sum_assignment(cost_matrix) # row y, col x | |
matches = np.asarray([[i, x] for i, x in enumerate(x) if cost_matrix[i, x] <= thresh]) | |
unmatched = np.ones(cost_matrix.shape) | |
for i, xi in matches: | |
unmatched[i, xi] = 0.0 | |
unmatched_a = np.where(unmatched.all(1))[0] | |
unmatched_b = np.where(unmatched.all(0))[0] | |
return matches, unmatched_a, unmatched_b | |
def ious(atlbrs, btlbrs): | |
""" | |
Compute cost based on IoU | |
:type atlbrs: list[tlbr] | np.ndarray | |
:type atlbrs: list[tlbr] | np.ndarray | |
:rtype ious np.ndarray | |
""" | |
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32) | |
if ious.size == 0: | |
return ious | |
ious = bbox_ious(np.ascontiguousarray(atlbrs, dtype=np.float32), np.ascontiguousarray(btlbrs, dtype=np.float32)) | |
return ious | |
def iou_distance(atracks, btracks): | |
""" | |
Compute cost based on IoU | |
:type atracks: list[STrack] | |
:type btracks: list[STrack] | |
:rtype cost_matrix np.ndarray | |
""" | |
if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) \ | |
or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)): | |
atlbrs = atracks | |
btlbrs = btracks | |
else: | |
atlbrs = [track.tlbr for track in atracks] | |
btlbrs = [track.tlbr for track in btracks] | |
_ious = ious(atlbrs, btlbrs) | |
return 1 - _ious # cost matrix | |
def v_iou_distance(atracks, btracks): | |
""" | |
Compute cost based on IoU | |
:type atracks: list[STrack] | |
:type btracks: list[STrack] | |
:rtype cost_matrix np.ndarray | |
""" | |
if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) \ | |
or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)): | |
atlbrs = atracks | |
btlbrs = btracks | |
else: | |
atlbrs = [track.tlwh_to_tlbr(track.pred_bbox) for track in atracks] | |
btlbrs = [track.tlwh_to_tlbr(track.pred_bbox) for track in btracks] | |
_ious = ious(atlbrs, btlbrs) | |
return 1 - _ious # cost matrix | |
def embedding_distance(tracks, detections, metric='cosine'): | |
""" | |
:param tracks: list[STrack] | |
:param detections: list[BaseTrack] | |
:param metric: | |
:return: cost_matrix np.ndarray | |
""" | |
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32) | |
if cost_matrix.size == 0: | |
return cost_matrix | |
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32) | |
# for i, track in enumerate(tracks): | |
# cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric)) | |
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32) | |
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Normalized features | |
return cost_matrix | |
def gate_cost_matrix(kf, cost_matrix, tracks, detections, only_position=False): | |
"""Apply gating to the cost matrix based on predicted tracks and detected objects.""" | |
if cost_matrix.size == 0: | |
return cost_matrix | |
gating_dim = 2 if only_position else 4 | |
gating_threshold = chi2inv95[gating_dim] | |
measurements = np.asarray([det.to_xyah() for det in detections]) | |
for row, track in enumerate(tracks): | |
gating_distance = kf.gating_distance(track.mean, track.covariance, measurements, only_position) | |
cost_matrix[row, gating_distance > gating_threshold] = np.inf | |
return cost_matrix | |
def fuse_motion(kf, cost_matrix, tracks, detections, only_position=False, lambda_=0.98): | |
"""Fuse motion between tracks and detections with gating and Kalman filtering.""" | |
if cost_matrix.size == 0: | |
return cost_matrix | |
gating_dim = 2 if only_position else 4 | |
gating_threshold = chi2inv95[gating_dim] | |
measurements = np.asarray([det.to_xyah() for det in detections]) | |
for row, track in enumerate(tracks): | |
gating_distance = kf.gating_distance(track.mean, track.covariance, measurements, only_position, metric='maha') | |
cost_matrix[row, gating_distance > gating_threshold] = np.inf | |
cost_matrix[row] = lambda_ * cost_matrix[row] + (1 - lambda_) * gating_distance | |
return cost_matrix | |
def fuse_iou(cost_matrix, tracks, detections): | |
"""Fuses ReID and IoU similarity matrices to yield a cost matrix for object tracking.""" | |
if cost_matrix.size == 0: | |
return cost_matrix | |
reid_sim = 1 - cost_matrix | |
iou_dist = iou_distance(tracks, detections) | |
iou_sim = 1 - iou_dist | |
fuse_sim = reid_sim * (1 + iou_sim) / 2 | |
# det_scores = np.array([det.score for det in detections]) | |
# det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0) | |
return 1 - fuse_sim # fuse cost | |
def fuse_score(cost_matrix, detections): | |
"""Fuses cost matrix with detection scores to produce a single similarity matrix.""" | |
if cost_matrix.size == 0: | |
return cost_matrix | |
iou_sim = 1 - cost_matrix | |
det_scores = np.array([det.score for det in detections]) | |
det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0) | |
fuse_sim = iou_sim * det_scores | |
return 1 - fuse_sim # fuse_cost | |
def bbox_ious(box1, box2, eps=1e-7): | |
""" | |
Calculate the Intersection over Union (IoU) between pairs of bounding boxes. | |
Args: | |
box1 (np.array): A numpy array of shape (n, 4) representing 'n' bounding boxes. | |
Each row is in the format (x1, y1, x2, y2). | |
box2 (np.array): A numpy array of shape (m, 4) representing 'm' bounding boxes. | |
Each row is in the format (x1, y1, x2, y2). | |
eps (float, optional): A small constant to prevent division by zero. Defaults to 1e-7. | |
Returns: | |
(np.array): A numpy array of shape (n, m) representing the IoU scores for each pair | |
of bounding boxes from box1 and box2. | |
Note: | |
The bounding box coordinates are expected to be in the format (x1, y1, x2, y2). | |
""" | |
# Get the coordinates of bounding boxes | |
b1_x1, b1_y1, b1_x2, b1_y2 = box1.T | |
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T | |
# Intersection area | |
inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \ | |
(np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0) | |
# box2 area | |
box1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1) | |
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) | |
return inter_area / (box2_area + box1_area[:, None] - inter_area + eps) | |