Spaces:
Running
on
T4
Running
on
T4
from ultralytics import YOLO | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
import cv2 | |
import torch | |
from PIL import Image | |
# Load the pre-trained model | |
model = YOLO('checkpoints/FastSAM.pt') | |
# Description | |
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>" | |
description = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). | |
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon. | |
⌛️ It takes about 4~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded. | |
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked. | |
📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing) | |
😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant. | |
🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM) | |
""" | |
examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"], | |
["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"], | |
["assets/sa_561.jpg"], ["assets/sa_192.jpg"], | |
["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]] | |
default_example = examples[0] | |
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" | |
def fast_process(annotations, image, high_quality, device, scale): | |
if isinstance(annotations[0],dict): | |
annotations = [annotation['segmentation'] for annotation in annotations] | |
original_h = image.height | |
original_w = image.width | |
if high_quality == True: | |
if isinstance(annotations[0],torch.Tensor): | |
annotations = np.array(annotations.cpu()) | |
for i, mask in enumerate(annotations): | |
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) | |
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)) | |
if device == 'cpu': | |
annotations = np.array(annotations) | |
inner_mask = fast_show_mask(annotations, | |
plt.gca(), | |
bbox=None, | |
points=None, | |
pointlabel=None, | |
retinamask=True, | |
target_height=original_h, | |
target_width=original_w) | |
else: | |
if isinstance(annotations[0],np.ndarray): | |
annotations = torch.from_numpy(annotations) | |
inner_mask = fast_show_mask_gpu(annotations, | |
plt.gca(), | |
bbox=None, | |
points=None, | |
pointlabel=None) | |
if isinstance(annotations, torch.Tensor): | |
annotations = annotations.cpu().numpy() | |
if high_quality: | |
contour_all = [] | |
temp = np.zeros((original_h, original_w,1)) | |
for i, mask in enumerate(annotations): | |
if type(mask) == dict: | |
mask = mask['segmentation'] | |
annotation = mask.astype(np.uint8) | |
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
for contour in contours: | |
contour_all.append(contour) | |
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale) | |
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9]) | |
contour_mask = temp / 255 * color.reshape(1, 1, -1) | |
image = image.convert('RGBA') | |
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA') | |
image.paste(overlay_inner, (0, 0), overlay_inner) | |
if high_quality: | |
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA') | |
image.paste(overlay_contour, (0, 0), overlay_contour) | |
return image | |
# CPU post process | |
def fast_show_mask(annotation, ax, bbox=None, | |
points=None, pointlabel=None, | |
retinamask=True, target_height=960, | |
target_width=960): | |
msak_sum = annotation.shape[0] | |
height = annotation.shape[1] | |
weight = annotation.shape[2] | |
# 将annotation 按照面积 排序 | |
areas = np.sum(annotation, axis=(1, 2)) | |
sorted_indices = np.argsort(areas)[::1] | |
annotation = annotation[sorted_indices] | |
index = (annotation != 0).argmax(axis=0) | |
color = np.random.random((msak_sum,1,1,3)) | |
transparency = np.ones((msak_sum,1,1,1)) * 0.6 | |
visual = np.concatenate([color,transparency],axis=-1) | |
mask_image = np.expand_dims(annotation,-1) * visual | |
mask = np.zeros((height,weight,4)) | |
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij') | |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) | |
# 使用向量化索引更新show的值 | |
mask[h_indices, w_indices, :] = mask_image[indices] | |
if bbox is not None: | |
x1, y1, x2, y2 = bbox | |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) | |
# draw point | |
if points is not None: | |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y') | |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m') | |
if retinamask==False: | |
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST) | |
return mask | |
def fast_show_mask_gpu(annotation, ax, | |
bbox=None, points=None, | |
pointlabel=None): | |
msak_sum = annotation.shape[0] | |
height = annotation.shape[1] | |
weight = annotation.shape[2] | |
areas = torch.sum(annotation, dim=(1, 2)) | |
sorted_indices = torch.argsort(areas, descending=False) | |
annotation = annotation[sorted_indices] | |
# 找每个位置第一个非零值下标 | |
index = (annotation != 0).to(torch.long).argmax(dim=0) | |
color = torch.rand((msak_sum,1,1,3)).to(annotation.device) | |
transparency = torch.ones((msak_sum,1,1,1)).to(annotation.device) * 0.6 | |
visual = torch.cat([color,transparency],dim=-1) | |
mask_image = torch.unsqueeze(annotation,-1) * visual | |
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式 | |
mask = torch.zeros((height,weight,4)).to(annotation.device) | |
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight)) | |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) | |
# 使用向量化索引更新show的值 | |
mask[h_indices, w_indices, :] = mask_image[indices] | |
mask_cpu = mask.cpu().numpy() | |
if bbox is not None: | |
x1, y1, x2, y2 = bbox | |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) | |
# draw point | |
if points is not None: | |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y') | |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m') | |
return mask_cpu | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
def segment_image(input, evt: gr.SelectData=None, input_size=1024, high_visual_quality=True, iou_threshold=0.7, conf_threshold=0.25): | |
point = (evt.index[0],evt.index[1]) | |
input_size = int(input_size) # 确保 imgsz 是整数 | |
# Thanks for the suggestion by hysts in HuggingFace. | |
w, h = input.size | |
scale = input_size / max(w, h) | |
new_w = int(w * scale) | |
new_h = int(h * scale) | |
input = input.resize((new_w, new_h)) | |
results = model(input, device=device, retina_masks=True, iou=iou_threshold, conf=conf_threshold, imgsz=input_size) | |
fig = fast_process(annotations=results[0].masks.data, | |
image=input, high_quality=high_visual_quality, | |
device=device, scale=(1024 // input_size), | |
points=) | |
return fig | |
# input_size=1024 | |
# high_quality_visual=True | |
# inp = 'assets/sa_192.jpg' | |
# input = Image.open(inp) | |
# device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# input_size = int(input_size) # 确保 imgsz 是整数 | |
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size) | |
# pil_image = fast_process(annotations=results[0].masks.data, | |
# image=input, high_quality=high_quality_visual, device=device) | |
cond_img = gr.Image(label="Input", value=default_example[0], type='pil') | |
segm_img = gr.Image(label="Segmented Image", interactive=False, type='pil') | |
input_size_slider = gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='Input_size (Our model was trained on a size of 1024)') | |
with gr.Blocks(css=css, title='Fast Segment Anything') as demo: | |
with gr.Row(): | |
# Title | |
gr.Markdown(title) | |
# # # Description | |
# # gr.Markdown(description) | |
# Images | |
with gr.Row(variant="panel"): | |
with gr.Column(scale=1): | |
cond_img.render() | |
with gr.Column(scale=1): | |
segm_img.render() | |
# Submit & Clear | |
with gr.Row(): | |
with gr.Column(): | |
input_size_slider.render() | |
with gr.Row(): | |
vis_check = gr.Checkbox(value=True, label='high_visual_quality') | |
with gr.Column(): | |
segment_btn = gr.Button("Segment Anything", variant='primary') | |
# with gr.Column(): | |
# clear_btn = gr.Button("Clear", variant="primary") | |
gr.Markdown("Try some of the examples below ⬇️") | |
gr.Examples(examples=examples, | |
inputs=[cond_img], | |
outputs=segm_img, | |
fn=segment_image, | |
cache_examples=True, | |
examples_per_page=4) | |
# gr.Markdown("Try some of the examples below ⬇️") | |
# gr.Examples(examples=examples, | |
# inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold], | |
# outputs=output, | |
# fn=segment_image, | |
# examples_per_page=4) | |
with gr.Column(): | |
with gr.Accordion("Advanced options", open=False): | |
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou_threshold') | |
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf_threshold') | |
# Description | |
gr.Markdown(description) | |
cond_img.select(segment_image, [], input_img) | |
segment_btn.click(segment_image, | |
inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold], | |
outputs=segm_img) | |
# def clear(): | |
# return None, None | |
# clear_btn.click(fn=clear, inputs=None, outputs=None) | |
demo.queue() | |
demo.launch() | |
# app_interface = gr.Interface(fn=predict, | |
# inputs=[gr.Image(type='pil'), | |
# gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'), | |
# gr.components.Checkbox(value=True, label='high_visual_quality')], | |
# # outputs=['plot'], | |
# outputs=gr.Image(type='pil'), | |
# # examples=[["assets/sa_8776.jpg"]], | |
# # # ["assets/sa_1309.jpg", 1024]], | |
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"], | |
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"], | |
# ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"], | |
# ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],], | |
# cache_examples=True, | |
# title="Fast Segment Anything (Everything mode)" | |
# ) | |
# app_interface.queue(concurrency_count=1, max_size=20) | |
# app_interface.launch() |