FastSAM / app_debug.py
AAAAAAyq
Update the examples
9724c61
raw
history blame
13.1 kB
from ultralytics import YOLO
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import cv2
import torch
from PIL import Image
# Load the pre-trained model
model = YOLO('checkpoints/FastSAM.pt')
# Description
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"
description = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM).
🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
⌛️ It takes about 4~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)
😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.
🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)
"""
examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"],
["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"],
["assets/sa_561.jpg"], ["assets/sa_192.jpg"],
["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]]
default_example = examples[0]
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
def fast_process(annotations, image, high_quality, device, scale):
if isinstance(annotations[0],dict):
annotations = [annotation['segmentation'] for annotation in annotations]
original_h = image.height
original_w = image.width
if high_quality == True:
if isinstance(annotations[0],torch.Tensor):
annotations = np.array(annotations.cpu())
for i, mask in enumerate(annotations):
mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
if device == 'cpu':
annotations = np.array(annotations)
inner_mask = fast_show_mask(annotations,
plt.gca(),
bbox=None,
points=None,
pointlabel=None,
retinamask=True,
target_height=original_h,
target_width=original_w)
else:
if isinstance(annotations[0],np.ndarray):
annotations = torch.from_numpy(annotations)
inner_mask = fast_show_mask_gpu(annotations,
plt.gca(),
bbox=None,
points=None,
pointlabel=None)
if isinstance(annotations, torch.Tensor):
annotations = annotations.cpu().numpy()
if high_quality:
contour_all = []
temp = np.zeros((original_h, original_w,1))
for i, mask in enumerate(annotations):
if type(mask) == dict:
mask = mask['segmentation']
annotation = mask.astype(np.uint8)
contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
contour_all.append(contour)
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
contour_mask = temp / 255 * color.reshape(1, 1, -1)
image = image.convert('RGBA')
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
image.paste(overlay_inner, (0, 0), overlay_inner)
if high_quality:
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
image.paste(overlay_contour, (0, 0), overlay_contour)
return image
# CPU post process
def fast_show_mask(annotation, ax, bbox=None,
points=None, pointlabel=None,
retinamask=True, target_height=960,
target_width=960):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
# 将annotation 按照面积 排序
areas = np.sum(annotation, axis=(1, 2))
sorted_indices = np.argsort(areas)[::1]
annotation = annotation[sorted_indices]
index = (annotation != 0).argmax(axis=0)
color = np.random.random((msak_sum,1,1,3))
transparency = np.ones((msak_sum,1,1,1)) * 0.6
visual = np.concatenate([color,transparency],axis=-1)
mask_image = np.expand_dims(annotation,-1) * visual
mask = np.zeros((height,weight,4))
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# 使用向量化索引更新show的值
mask[h_indices, w_indices, :] = mask_image[indices]
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
# draw point
if points is not None:
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
if retinamask==False:
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
return mask
def fast_show_mask_gpu(annotation, ax,
bbox=None, points=None,
pointlabel=None):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
areas = torch.sum(annotation, dim=(1, 2))
sorted_indices = torch.argsort(areas, descending=False)
annotation = annotation[sorted_indices]
# 找每个位置第一个非零值下标
index = (annotation != 0).to(torch.long).argmax(dim=0)
color = torch.rand((msak_sum,1,1,3)).to(annotation.device)
transparency = torch.ones((msak_sum,1,1,1)).to(annotation.device) * 0.6
visual = torch.cat([color,transparency],dim=-1)
mask_image = torch.unsqueeze(annotation,-1) * visual
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
mask = torch.zeros((height,weight,4)).to(annotation.device)
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# 使用向量化索引更新show的值
mask[h_indices, w_indices, :] = mask_image[indices]
mask_cpu = mask.cpu().numpy()
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
# draw point
if points is not None:
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
return mask_cpu
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def segment_image(input, evt: gr.SelectData=None, input_size=1024, high_visual_quality=True, iou_threshold=0.7, conf_threshold=0.25):
point = (evt.index[0],evt.index[1])
input_size = int(input_size) # 确保 imgsz 是整数
# Thanks for the suggestion by hysts in HuggingFace.
w, h = input.size
scale = input_size / max(w, h)
new_w = int(w * scale)
new_h = int(h * scale)
input = input.resize((new_w, new_h))
results = model(input, device=device, retina_masks=True, iou=iou_threshold, conf=conf_threshold, imgsz=input_size)
fig = fast_process(annotations=results[0].masks.data,
image=input, high_quality=high_visual_quality,
device=device, scale=(1024 // input_size),
points=)
return fig
# input_size=1024
# high_quality_visual=True
# inp = 'assets/sa_192.jpg'
# input = Image.open(inp)
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# input_size = int(input_size) # 确保 imgsz 是整数
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
# pil_image = fast_process(annotations=results[0].masks.data,
# image=input, high_quality=high_quality_visual, device=device)
cond_img = gr.Image(label="Input", value=default_example[0], type='pil')
segm_img = gr.Image(label="Segmented Image", interactive=False, type='pil')
input_size_slider = gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='Input_size (Our model was trained on a size of 1024)')
with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
with gr.Row():
# Title
gr.Markdown(title)
# # # Description
# # gr.Markdown(description)
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img.render()
with gr.Column(scale=1):
segm_img.render()
# Submit & Clear
with gr.Row():
with gr.Column():
input_size_slider.render()
with gr.Row():
vis_check = gr.Checkbox(value=True, label='high_visual_quality')
with gr.Column():
segment_btn = gr.Button("Segment Anything", variant='primary')
# with gr.Column():
# clear_btn = gr.Button("Clear", variant="primary")
gr.Markdown("Try some of the examples below ⬇️")
gr.Examples(examples=examples,
inputs=[cond_img],
outputs=segm_img,
fn=segment_image,
cache_examples=True,
examples_per_page=4)
# gr.Markdown("Try some of the examples below ⬇️")
# gr.Examples(examples=examples,
# inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold],
# outputs=output,
# fn=segment_image,
# examples_per_page=4)
with gr.Column():
with gr.Accordion("Advanced options", open=False):
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou_threshold')
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf_threshold')
# Description
gr.Markdown(description)
cond_img.select(segment_image, [], input_img)
segment_btn.click(segment_image,
inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold],
outputs=segm_img)
# def clear():
# return None, None
# clear_btn.click(fn=clear, inputs=None, outputs=None)
demo.queue()
demo.launch()
# app_interface = gr.Interface(fn=predict,
# inputs=[gr.Image(type='pil'),
# gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'),
# gr.components.Checkbox(value=True, label='high_visual_quality')],
# # outputs=['plot'],
# outputs=gr.Image(type='pil'),
# # examples=[["assets/sa_8776.jpg"]],
# # # ["assets/sa_1309.jpg", 1024]],
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
# ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
# ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
# cache_examples=True,
# title="Fast Segment Anything (Everything mode)"
# )
# app_interface.queue(concurrency_count=1, max_size=20)
# app_interface.launch()