Amruthaa commited on
Commit
6352c36
1 Parent(s): 6d22e10

Adding Image Generation

Browse files
Files changed (1) hide show
  1. app.py +11 -3
app.py CHANGED
@@ -1,5 +1,6 @@
1
  from transformers import pipeline
2
  import gradio as gr
 
3
 
4
  # 1. text summarizer
5
  summarizer = pipeline("summarization", model = "facebook/bart-large-cnn")
@@ -15,10 +16,14 @@ def get_ner(text):
15
 
16
  # 3. Image Captioning
17
  caption_model = pipeline("image-to-text", model = "Salesforce/blip-image-captioning-base")
18
- # processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
19
  def get_caption(img):
20
  output = caption_model(img)
21
  return output[0]["generated_text"]
 
 
 
 
 
22
 
23
 
24
  demo = gr.Blocks()
@@ -31,15 +36,18 @@ with demo:
31
  sum_btn.click(get_summary, sum_input, sum_output)
32
  with gr.Tab("Named Entity Recognition"):
33
  ner_input = [gr.Textbox(label="Text to find Entities", placeholder = "Enter text...", lines = 4)]
34
- # ner_output = gr.Textbox()
35
  ner_output = [gr.HighlightedText(label="Text with entities")]
36
  ner_btn = gr.Button("Generate entities")
37
- # allow_flagging = "never"
38
  ner_btn.click(get_ner, ner_input, ner_output)
39
  with gr.Tab("Image Captioning"):
40
  cap_input = [gr.Image(label="Upload Image", type="pil")]
41
  cap_btn = gr.Button("Generate Caption")
42
  cap_output = [gr.Textbox(label="Caption")]
43
  cap_btn.click(get_caption, cap_input, cap_output)
 
 
 
 
 
44
 
45
  demo.launch()
 
1
  from transformers import pipeline
2
  import gradio as gr
3
+ from diffusers import DiffusionPipeline
4
 
5
  # 1. text summarizer
6
  summarizer = pipeline("summarization", model = "facebook/bart-large-cnn")
 
16
 
17
  # 3. Image Captioning
18
  caption_model = pipeline("image-to-text", model = "Salesforce/blip-image-captioning-base")
 
19
  def get_caption(img):
20
  output = caption_model(img)
21
  return output[0]["generated_text"]
22
+
23
+ # 4. Image Generation
24
+ img_model = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
25
+ def get_img(prompt):
26
+ return img_model(prompt).images[0]
27
 
28
 
29
  demo = gr.Blocks()
 
36
  sum_btn.click(get_summary, sum_input, sum_output)
37
  with gr.Tab("Named Entity Recognition"):
38
  ner_input = [gr.Textbox(label="Text to find Entities", placeholder = "Enter text...", lines = 4)]
 
39
  ner_output = [gr.HighlightedText(label="Text with entities")]
40
  ner_btn = gr.Button("Generate entities")
 
41
  ner_btn.click(get_ner, ner_input, ner_output)
42
  with gr.Tab("Image Captioning"):
43
  cap_input = [gr.Image(label="Upload Image", type="pil")]
44
  cap_btn = gr.Button("Generate Caption")
45
  cap_output = [gr.Textbox(label="Caption")]
46
  cap_btn.click(get_caption, cap_input, cap_output)
47
+ with gr.Tab("Image Generation"):
48
+ img_input = [gr.Textbox(label="Your Text")]
49
+ img_btn = gr.Button("Generate Image")
50
+ img_output = [gr.Image(label="Generated Image")]
51
+ img_btn.click(get_img, img_input, img_output)
52
 
53
  demo.launch()