Amrrs's picture
Upload app.py
74bb5a2
raw
history blame
766 Bytes
import streamlit as st # web app
import spacy # named entity recognition
# title
st.title("News Bias Words Recognizer")
# wait until the model loads with a simple spinner - progress bar
with st.spinner("Please wait while the model is being loaded...."):
nlp = spacy.load("en_pipeline")
# text box to get user input
input = st.text_area(label = "Enter your text to get biased words recognized.....")
# create a doc object with named entities
doc = nlp(input)
# get the html / markdown code for displaying the output
output_html = spacy.displacy.render(doc, style='ent', jupyter=False, options = {"colors": {'bias':'#ff5a36'} })
# render the html code as a markdown with html rendering enabled
st.markdown(output_html, unsafe_allow_html=True)