Spaces:
Paused
Paused
Rename sgm/modules/autoencoding/__init__.py to sgm/modules/autoencoding/regularizers/__init__.py
a039727
verified
from abc import abstractmethod | |
from typing import Any, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ....modules.distributions.distributions import DiagonalGaussianDistribution | |
class AbstractRegularizer(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: | |
raise NotImplementedError() | |
def get_trainable_parameters(self) -> Any: | |
raise NotImplementedError() | |
class DiagonalGaussianRegularizer(AbstractRegularizer): | |
def __init__(self, sample: bool = True): | |
super().__init__() | |
self.sample = sample | |
def get_trainable_parameters(self) -> Any: | |
yield from () | |
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: | |
log = dict() | |
posterior = DiagonalGaussianDistribution(z) | |
if self.sample: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
kl_loss = posterior.kl() | |
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0] | |
log["kl_loss"] = kl_loss | |
return z, log | |
def measure_perplexity(predicted_indices, num_centroids): | |
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py | |
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally | |
encodings = ( | |
F.one_hot(predicted_indices, num_centroids).float().reshape(-1, num_centroids) | |
) | |
avg_probs = encodings.mean(0) | |
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() | |
cluster_use = torch.sum(avg_probs > 0) | |
return perplexity, cluster_use | |