Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import os | |
| import torch | |
| from model import create_vit | |
| from timeit import default_timer as timer | |
| from typing import Tuple, Dict | |
| class_names = ["NORMAL", "PNEUMONIA"] | |
| vit_model, vit_transforms = create_vit(seed=42) | |
| vit_model.load_state_dict( | |
| torch.load( | |
| f="finetuned_vit_b_16_pneumonia_feature_extractor.pth", | |
| map_location=torch.device("cpu") | |
| ) | |
| ) | |
| def predict(img): | |
| start_timer = timer() | |
| img = vit_transforms(img).unsqueeze(0) | |
| vit_model.eval() | |
| with torch.inference_mode(): | |
| pred_prob_int = torch.sigmoid(vit_model(img)).round().int().squeeze() | |
| if pred_prob_int.item() == 1: | |
| class_name = class_names[1] | |
| else: | |
| class_name = class_names[0] | |
| pred_time = round(timer() - start_timer, 5) | |
| return class_name, pred_time | |
| title = "Detect Pneumonia from chest X-Ray" | |
| description = "A ViT feature extractor Computer Vision model to detect Pneumonia from X-Ray Images." | |
| article = "Access project repository at [GitHub](https://github.com/Ammar2k/pneumonia_detection)" | |
| example_list = [["examples/" + example] for example in os.listdir("examples")] | |
| demo = gr.Interface(fn=predict, | |
| inputs=gr.Image(type="pil"), | |
| outputs=[gr.Label(num_top_classes=6, label="Predictions"), | |
| gr.Number(label="Prediction time(s)")], | |
| examples=example_list, | |
| title=title, | |
| description=description, | |
| article=article | |
| ) | |
| demo.launch() | |