Ammar2k's picture
initial commit
d246b53
import gradio as gr
import os
import torch
from model import create_vit
from timeit import default_timer as timer
from typing import Tuple, Dict
class_names = ["NORMAL", "PNEUMONIA"]
vit_model, vit_transforms = create_vit(seed=42)
vit_model.load_state_dict(
torch.load(
f="finetuned_vit_b_16_pneumonia_feature_extractor.pth",
map_location=torch.device("cpu")
)
)
def predict(img):
start_timer = timer()
img = vit_transforms(img).unsqueeze(0)
vit_model.eval()
with torch.inference_mode():
pred_prob_int = torch.sigmoid(vit_model(img)).round().int().squeeze()
if pred_prob_int.item() == 1:
class_name = class_names[1]
else:
class_name = class_names[0]
pred_time = round(timer() - start_timer, 5)
return class_name, pred_time
title = "Detect Pneumonia from chest X-Ray"
description = "A ViT feature extractor Computer Vision model to detect Pneumonia from X-Ray Images."
article = "Access project repository at [GitHub](https://github.com/Ammar2k/pneumonia_detection)"
example_list = [["examples/" + example] for example in os.listdir("examples")]
demo = gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Label(num_top_classes=6, label="Predictions"),
gr.Number(label="Prediction time(s)")],
examples=example_list,
title=title,
description=description,
article=article
)
demo.launch()