Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import torch | |
from model import create_vit | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
class_names = ["NORMAL", "PNEUMONIA"] | |
vit_model, vit_transforms = create_vit(seed=42) | |
vit_model.load_state_dict( | |
torch.load( | |
f="finetuned_vit_b_16_pneumonia_feature_extractor.pth", | |
map_location=torch.device("cpu") | |
) | |
) | |
def predict(img): | |
start_timer = timer() | |
img = vit_transforms(img).unsqueeze(0) | |
vit_model.eval() | |
with torch.inference_mode(): | |
pred_prob_int = torch.sigmoid(vit_model(img)).round().int().squeeze() | |
if pred_prob_int.item() == 1: | |
class_name = class_names[1] | |
else: | |
class_name = class_names[0] | |
pred_time = round(timer() - start_timer, 5) | |
return class_name, pred_time | |
title = "Detect Pneumonia from chest X-Ray" | |
description = "A ViT feature extractor Computer Vision model to detect Pneumonia from X-Ray Images." | |
article = "Access project repository at [GitHub](https://github.com/Ammar2k/pneumonia_detection)" | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=6, label="Predictions"), | |
gr.Number(label="Prediction time(s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article | |
) | |
demo.launch() | |