Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from joblib import load
|
3 |
+
import torch
|
4 |
+
import clip
|
5 |
+
from PIL import Image
|
6 |
+
from sklearn.linear_model import LogisticRegression
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
from tqdm import tqdm
|
9 |
+
import torchvision
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
CLF_FILENAME = 'lr-model.pkl'
|
13 |
+
clf = load(CLF_FILENAME)
|
14 |
+
|
15 |
+
# Load the model
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
model, preprocess = clip.load('ViT-B/32', device)
|
18 |
+
|
19 |
+
def classify_image(img):
|
20 |
+
#inp = img.reshape((-1, 64, 64, 3))
|
21 |
+
im = Image.fromarray(img, mode="RGB")
|
22 |
+
image_pre_process = [preprocess(im)]
|
23 |
+
image_input = torch.tensor(np.stack(image_pre_process)).to(device)
|
24 |
+
with torch.no_grad():
|
25 |
+
image_features = model.encode_image(image_input)
|
26 |
+
image_data = image_features.cpu().numpy()
|
27 |
+
|
28 |
+
pred = clf.predict(image_data)
|
29 |
+
outputs = {0: 'π± Biodegradable', 1: 'π Non-biodegradable'}
|
30 |
+
return outputs[int(pred >= 0.5)]
|
31 |
+
|
32 |
+
image = gr.inputs.Image(shape=(64,64))
|
33 |
+
iface = gr.Interface(fn=classify_image, inputs=image, outputs="text", interpretation="default", examples=["bananas.jpeg", "bio.jpeg", "nonbio.jpeg", "plastics.jpeg"])
|
34 |
+
iface.launch(debug=True)
|