Spaces:
Sleeping
Sleeping
AmitIsraeli
commited on
Commit
•
f6d4208
1
Parent(s):
8d1279d
add explanation
Browse files- .DS_Store +0 -0
- VAR_explained.png +0 -0
- app.py +102 -27
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
VAR_explained.png
ADDED
app.py
CHANGED
@@ -35,9 +35,9 @@ class SimpleAdapter(nn.Module):
|
|
35 |
x = self.norm2(x)
|
36 |
return x
|
37 |
|
38 |
-
class
|
39 |
def __init__(self, pl_checkpoint=None, start_class_id=578, hugging_face_token=None, siglip_model='google/siglip-base-patch16-224', device="cpu", MODEL_DEPTH=16):
|
40 |
-
super(
|
41 |
self.device = device
|
42 |
self.class_id = start_class_id
|
43 |
# Define layers
|
@@ -117,12 +117,10 @@ if __name__ == '__main__':
|
|
117 |
# Initialize the model
|
118 |
checkpoint = 'VARtext_v1.pth' # Replace with your actual checkpoint path
|
119 |
device = 'cpu' if not torch.cuda.is_available() else 'cuda'
|
120 |
-
|
121 |
-
model =
|
122 |
-
model.load_state_dict(state_dict)
|
123 |
model.to(device)
|
124 |
|
125 |
-
|
126 |
def generate_image_gradio(text, beta=1.0, seed=None, more_smooth=False, top_k=0, top_p=0.9):
|
127 |
print(f"Generating image for text: {text}\n"
|
128 |
f"beta: {beta}\n"
|
@@ -133,34 +131,111 @@ if __name__ == '__main__':
|
|
133 |
image = model.generate_image(text, beta=beta, seed=seed, more_smooth=more_smooth, top_k=int(top_k), top_p=top_p)
|
134 |
return image
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
with gr.Blocks() as demo:
|
138 |
-
gr.Markdown("# PopYou2-VAR")
|
139 |
with gr.Tab("Generate Image"):
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
148 |
generate_button.click(
|
149 |
generate_image_gradio,
|
150 |
inputs=[text_input, beta_input, seed_input, more_smooth_input, top_k_input, top_p_input],
|
151 |
outputs=image_output
|
152 |
)
|
153 |
|
154 |
-
gr.Markdown("
|
155 |
-
with gr.Row():
|
156 |
-
example1_text = gr.Textbox(label="Example 1", value="a funko pop figure of a yellow robot tom cruise with headphones on a white background", interactive=False)
|
157 |
-
example1_image = gr.Image(label="Generated Image 1", value="examples/tom_cruise_robot.png") # Replace with the actual path
|
158 |
-
with gr.Row():
|
159 |
-
example2_text = gr.Textbox(label="Example 2", value="a funko pop figure of a alien Scarlett Johansson holding a shield on a white background", interactive=False)
|
160 |
-
example2_image = gr.Image(label="Generated Image 2", value="examples/alien_Scarlett_Johansson.png") # Replace with the actual path
|
161 |
-
with gr.Row():
|
162 |
-
example3_text = gr.Textbox(label="Example 3", value="a funko pop figure of a woman with a hat and a pink long hair and blue dress on a white background", interactive=False)
|
163 |
-
example3_image = gr.Image(label="Generated Image 3", value="examples/woman_pink.png") # Replace with the actual path
|
164 |
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
|
|
|
35 |
x = self.norm2(x)
|
36 |
return x
|
37 |
|
38 |
+
class InferenceTextVAR(nn.Module):
|
39 |
def __init__(self, pl_checkpoint=None, start_class_id=578, hugging_face_token=None, siglip_model='google/siglip-base-patch16-224', device="cpu", MODEL_DEPTH=16):
|
40 |
+
super(InferenceTextVAR, self).__init__()
|
41 |
self.device = device
|
42 |
self.class_id = start_class_id
|
43 |
# Define layers
|
|
|
117 |
# Initialize the model
|
118 |
checkpoint = 'VARtext_v1.pth' # Replace with your actual checkpoint path
|
119 |
device = 'cpu' if not torch.cuda.is_available() else 'cuda'
|
120 |
+
model = InferenceTextVAR(device=device)
|
121 |
+
model.load_state_dict(torch.load(checkpoint, map_location=device))
|
|
|
122 |
model.to(device)
|
123 |
|
|
|
124 |
def generate_image_gradio(text, beta=1.0, seed=None, more_smooth=False, top_k=0, top_p=0.9):
|
125 |
print(f"Generating image for text: {text}\n"
|
126 |
f"beta: {beta}\n"
|
|
|
131 |
image = model.generate_image(text, beta=beta, seed=seed, more_smooth=more_smooth, top_k=int(top_k), top_p=top_p)
|
132 |
return image
|
133 |
|
134 |
+
with gr.Blocks(css="""
|
135 |
+
.project-item {margin-bottom: 30px;}
|
136 |
+
.project-tags .tag {display: inline-block; background-color: #e0e0e0; padding: 5px 10px; margin-right: 5px; border-radius: 5px;}
|
137 |
+
.project-description {margin-top: 20px;}
|
138 |
+
.github-button, .huggingface-button, .wandb-button {
|
139 |
+
display: inline-block; margin-left: 10px; text-decoration: none; font-size: 14px;
|
140 |
+
padding: 5px 10px; background-color: #f0f0f0; border-radius: 5px; color: black;
|
141 |
+
}
|
142 |
+
.project-content {display: flex; flex-direction: row;}
|
143 |
+
.project-description {flex: 2; padding-right: 20px;}
|
144 |
+
.project-options-image {flex: 1;}
|
145 |
+
.funko-image {width: 100%; max-width: 300px;}
|
146 |
+
""") as demo:
|
147 |
+
gr.Markdown("""
|
148 |
+
# PopYou2 - VAR Text
|
149 |
+
|
150 |
+
<!-- Project Links -->
|
151 |
+
[![GitHub](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/amit154154/VAR_clip)
|
152 |
+
[![Weights & Biases](https://img.shields.io/badge/Weights%20%26%20Biases-Report-orange?logo=weightsandbiases)](https://api.wandb.ai/links/amit154154/cqccmfsl)
|
153 |
+
|
154 |
+
**Tags:** Image Generation, GAN
|
155 |
+
|
156 |
+
## Project Explanation
|
157 |
+
|
158 |
+
- **Dataset Generation:** Generated a comprehensive dataset of approximately 100,000 Funko Pop! images with detailed prompts using [SDXL Turbo](https://huggingface.co/stabilityai/sdxl-turbo) for high-quality data creation.
|
159 |
+
- **Model Fine-tuning:** Fine-tuned the [Visual AutoRegressive (VAR)](https://arxiv.org/abs/2404.02905) model, pretrained on ImageNet, to adapt it for Funko Pop! generation by injecting a custom embedding representing the "doll" class.
|
160 |
+
- **Adapter Training:** Trained an adapter with the frozen [SigLIP image encoder](https://github.com/FoundationVision/VAR) and a lightweight LoRA module to map image embeddings to text representation in a large language model.
|
161 |
+
- **Text-to-Image Generation:** Enabled text-to-image generation by replacing the SigLIP image encoder with its text encoder, retaining frozen components such as the VAE and generator for efficiency and quality.
|
162 |
+
|
163 |
+
![VAR Explained](VAR_explained.png)
|
164 |
+
|
165 |
+
|
166 |
+
## Generate Your Own Funko Pop!
|
167 |
+
""")
|
168 |
|
|
|
|
|
169 |
with gr.Tab("Generate Image"):
|
170 |
+
with gr.Row():
|
171 |
+
with gr.Column(scale=1):
|
172 |
+
text_input = gr.Textbox(label="Input Text", placeholder="Enter a description for your Funko Pop!")
|
173 |
+
beta_input = gr.Slider(label="Beta", minimum=0.0, maximum=2.5, step=0.05, value=1.0)
|
174 |
+
seed_input = gr.Number(label="Seed", value=None)
|
175 |
+
more_smooth_input = gr.Checkbox(label="More Smooth", value=False)
|
176 |
+
top_k_input = gr.Number(label="Top K", value=0)
|
177 |
+
top_p_input = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, step=0.01, value=0.5)
|
178 |
+
generate_button = gr.Button("Generate Image")
|
179 |
+
with gr.Column(scale=1):
|
180 |
+
image_output = gr.Image(label="Generated Image")
|
181 |
+
|
182 |
generate_button.click(
|
183 |
generate_image_gradio,
|
184 |
inputs=[text_input, beta_input, seed_input, more_smooth_input, top_k_input, top_p_input],
|
185 |
outputs=image_output
|
186 |
)
|
187 |
|
188 |
+
gr.Markdown("## Examples")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
+
with gr.Row():
|
191 |
+
with gr.Column():
|
192 |
+
gr.Markdown("### Example 1")
|
193 |
+
gr.Markdown("A Funko Pop figure of a yellow robot Tom Cruise with headphones on a white background")
|
194 |
+
example1_image = gr.Image(value="examples/tom_cruise_robot.png") # Replace with the actual path
|
195 |
+
|
196 |
+
with gr.Column():
|
197 |
+
gr.Markdown("### Example 2")
|
198 |
+
gr.Markdown("A Funko Pop figure of an alien Scarlett Johansson holding a shield on a white background")
|
199 |
+
example2_image = gr.Image(value="examples/alien_Scarlett_Johansson.png") # Replace with the actual path
|
200 |
+
|
201 |
+
with gr.Column():
|
202 |
+
gr.Markdown("### Example 3")
|
203 |
+
gr.Markdown("A Funko Pop figure of a woman with a hat and pink long hair and blue dress on a white background")
|
204 |
+
example3_image = gr.Image(value="examples/woman_pink.png") # Replace with the actual path
|
205 |
+
|
206 |
+
gr.Markdown("""
|
207 |
+
## Customize Your Funko Pop!
|
208 |
+
|
209 |
+
Build your own Funko Pop! by selecting options below and clicking "Generate Custom Funko Pop!".
|
210 |
+
|
211 |
+
""")
|
212 |
+
|
213 |
+
def update_custom_image(famous_name, character, action):
|
214 |
+
# Build the prompt based on the selections
|
215 |
+
parts = []
|
216 |
+
if famous_name != "None":
|
217 |
+
parts.append(f"a Funko Pop figure of {famous_name}")
|
218 |
+
else:
|
219 |
+
parts.append("a Funko Pop figure")
|
220 |
+
if character != "None":
|
221 |
+
parts.append(f"styled as a {character}")
|
222 |
+
if action != "None":
|
223 |
+
parts.append(f"performing {action}")
|
224 |
+
parts.append("on a white background")
|
225 |
+
prompt = ", ".join(parts)
|
226 |
+
image = model.generate_image(prompt)
|
227 |
+
return image
|
228 |
+
|
229 |
+
famous_name_input = gr.Dropdown(choices=["None", "Donald Trump", "Johnny Depp", "Oprah Winfrey"], label="Famous Name", value="None")
|
230 |
+
character_input = gr.Dropdown(choices=["None", "Alien", "Robot"], label="Character", value="None")
|
231 |
+
action_input = gr.Dropdown(choices=["None", "Playing the Guitar", "Holding the Sword"], label="Action", value="None")
|
232 |
+
custom_generate_button = gr.Button("Generate Custom Funko Pop!")
|
233 |
+
custom_image_output = gr.Image(label="Custom Funko Pop!")
|
234 |
+
|
235 |
+
custom_generate_button.click(
|
236 |
+
update_custom_image,
|
237 |
+
inputs=[famous_name_input, character_input, action_input],
|
238 |
+
outputs=custom_image_output
|
239 |
+
)
|
240 |
|
241 |
+
demo.launch()
|