PopYou / models /var.py
AmitIsraeli's picture
Add model and infrance app
64bf706
raw
history blame
18.2 kB
import math
from functools import partial
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
import dist
from models.basic_var import AdaLNBeforeHead, AdaLNSelfAttn
from models.helpers import gumbel_softmax_with_rng, sample_with_top_k_top_p_
from models.vqvae import VQVAE, VectorQuantizer2
class SharedAdaLin(nn.Linear):
def forward(self, cond_BD):
C = self.weight.shape[0] // 6
return super().forward(cond_BD).view(-1, 1, 6, C) # B16C
class VAR(nn.Module):
def __init__(
self, vae_local: VQVAE,
num_classes=1000, depth=16, embed_dim=1024, num_heads=16, mlp_ratio=4., drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0.,
norm_eps=1e-6, shared_aln=False, cond_drop_rate=0.1,
attn_l2_norm=False,
patch_nums=(1, 2, 3, 4, 5, 6, 8, 10, 13, 16), # 10 steps by default
flash_if_available=True, fused_if_available=True,
):
super().__init__()
# 0. hyperparameters
assert embed_dim % num_heads == 0
self.Cvae, self.V = vae_local.Cvae, vae_local.vocab_size
self.depth, self.C, self.D, self.num_heads = depth, embed_dim, embed_dim, num_heads
self.cond_drop_rate = cond_drop_rate
self.prog_si = -1 # progressive training
self.patch_nums: Tuple[int] = patch_nums
self.L = sum(pn ** 2 for pn in self.patch_nums)
self.first_l = self.patch_nums[0] ** 2
self.begin_ends = []
cur = 0
for i, pn in enumerate(self.patch_nums):
self.begin_ends.append((cur, cur + pn ** 2))
cur += pn ** 2
self.num_stages_minus_1 = len(self.patch_nums) - 1
self.rng = torch.Generator(device="mps")
# 1. input (word) embedding
quant: VectorQuantizer2 = vae_local.quantize
self.vae_proxy: Tuple[VQVAE] = (vae_local,)
self.vae_quant_proxy: Tuple[VectorQuantizer2] = (quant,)
self.word_embed = nn.Linear(self.Cvae, self.C)
# 2. class embedding
init_std = math.sqrt(1 / self.C / 3)
self.num_classes = num_classes
self.uniform_prob = torch.full((1, num_classes), fill_value=1.0 / num_classes, dtype=torch.float32,
device=dist.get_device())
self.class_emb = nn.Embedding(self.num_classes + 1, self.C)
nn.init.trunc_normal_(self.class_emb.weight.data, mean=0, std=init_std)
self.pos_start = nn.Parameter(torch.empty(1, self.first_l, self.C))
nn.init.trunc_normal_(self.pos_start.data, mean=0, std=init_std)
# 3. absolute position embedding
pos_1LC = []
for i, pn in enumerate(self.patch_nums):
pe = torch.empty(1, pn * pn, self.C)
nn.init.trunc_normal_(pe, mean=0, std=init_std)
pos_1LC.append(pe)
pos_1LC = torch.cat(pos_1LC, dim=1) # 1, L, C
assert tuple(pos_1LC.shape) == (1, self.L, self.C)
self.pos_1LC = nn.Parameter(pos_1LC)
# level embedding (similar to GPT's segment embedding, used to distinguish different levels of token pyramid)
self.lvl_embed = nn.Embedding(len(self.patch_nums), self.C)
nn.init.trunc_normal_(self.lvl_embed.weight.data, mean=0, std=init_std)
# 4. backbone blocks
self.shared_ada_lin = nn.Sequential(nn.SiLU(inplace=False),
SharedAdaLin(self.D, 6 * self.C)) if shared_aln else nn.Identity()
norm_layer = partial(nn.LayerNorm, eps=norm_eps)
self.drop_path_rate = drop_path_rate
dpr = [x.item() for x in
torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule (linearly increasing)
self.blocks = nn.ModuleList([
AdaLNSelfAttn(
cond_dim=self.D, shared_aln=shared_aln,
block_idx=block_idx, embed_dim=self.C, norm_layer=norm_layer, num_heads=num_heads, mlp_ratio=mlp_ratio,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[block_idx],
last_drop_p=0 if block_idx == 0 else dpr[block_idx - 1],
attn_l2_norm=attn_l2_norm,
flash_if_available=flash_if_available, fused_if_available=fused_if_available,
)
for block_idx in range(depth)
])
fused_add_norm_fns = [b.fused_add_norm_fn is not None for b in self.blocks]
self.using_fused_add_norm_fn = any(fused_add_norm_fns)
print(
f'\n[constructor] ==== flash_if_available={flash_if_available} ({sum(b.attn.using_flash for b in self.blocks)}/{self.depth}), fused_if_available={fused_if_available} (fusing_add_ln={sum(fused_add_norm_fns)}/{self.depth}, fusing_mlp={sum(b.ffn.fused_mlp_func is not None for b in self.blocks)}/{self.depth}) ==== \n'
f' [VAR config ] embed_dim={embed_dim}, num_heads={num_heads}, depth={depth}, mlp_ratio={mlp_ratio}\n'
f' [drop ratios ] drop_rate={drop_rate}, attn_drop_rate={attn_drop_rate}, drop_path_rate={drop_path_rate:g} ({torch.linspace(0, drop_path_rate, depth)})',
end='\n\n', flush=True
)
# 5. attention mask used in training (for masking out the future)
# it won't be used in inference, since kv cache is enabled
d: torch.Tensor = torch.cat([torch.full((pn * pn,), i) for i, pn in enumerate(self.patch_nums)]).view(1, self.L,
1)
dT = d.transpose(1, 2) # dT: 11L
lvl_1L = dT[:, 0].contiguous()
self.register_buffer('lvl_1L', lvl_1L)
attn_bias_for_masking = torch.where(d >= dT, 0., -torch.inf).reshape(1, 1, self.L, self.L)
self.register_buffer('attn_bias_for_masking', attn_bias_for_masking.contiguous())
# 6. classifier head
self.head_nm = AdaLNBeforeHead(self.C, self.D, norm_layer=norm_layer)
self.head = nn.Linear(self.C, self.V)
def get_logits(self, h_or_h_and_residual: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
cond_BD: Optional[torch.Tensor]):
if not isinstance(h_or_h_and_residual, torch.Tensor):
h, resi = h_or_h_and_residual # fused_add_norm must be used
h = resi + self.blocks[-1].drop_path(h)
else: # fused_add_norm is not used
h = h_or_h_and_residual
return self.head(self.head_nm(h.float(), cond_BD).float()).float()
@torch.no_grad()
def autoregressive_infer_cfg(
self, B: int, label_B: Optional[Union[int, torch.LongTensor]],
delta_condition: torch.Tensor, alpha: float, beta: float,
g_seed: Optional[int] = None, cfg=1.5, top_k=0, top_p=0.0,
more_smooth=False,
) -> torch.Tensor: # returns reconstructed image (B, 3, H, W) in [0, 1]
"""
Generate images using autoregressive inference with classifier-free guidance.
:param B: batch size
:param label_B: class labels; if None, randomly sampled
:param delta_condition: tensor of shape (B, D)
:param alpha: scalar weight for class embedding
:param beta: scalar weight for delta_condition
:param g_seed: random seed
:param cfg: classifier-free guidance ratio
:param top_k: top-k sampling
:param top_p: top-p sampling
:param more_smooth: smoothing the pred using gumbel softmax; only used in visualization, not used in FID/IS benchmarking
:return: reconstructed images (B, 3, H, W)
"""
if g_seed is None:
rng = None
else:
self.rng.manual_seed(g_seed)
rng = self.rng
device = self.lvl_1L.device
if label_B is None:
label_B = torch.multinomial(self.uniform_prob, num_samples=B, replacement=True, generator=rng).reshape(B)
elif isinstance(label_B, int):
label_B = torch.full((B,), fill_value=self.num_classes if label_B < 0 else label_B, device=device)
# Prepare labels for conditioned and unconditioned versions
label_B_cond = label_B
label_B_uncond = torch.full_like(label_B, fill_value=self.num_classes)
label_B = torch.cat((label_B_cond, label_B_uncond), dim=0) # shape (2B,)
# Prepare delta_condition for conditioned and unconditioned versions
delta_condition_uncond = torch.zeros_like(delta_condition)
delta_condition = torch.cat((delta_condition, delta_condition_uncond), dim=0) # shape (2B, D)
class_emb = self.class_emb(label_B) # shape (2B, D)
cond_BD = alpha * class_emb + beta * delta_condition # shape (2B, D)
sos = cond_BD.unsqueeze(1).expand(2 * B, self.first_l, -1) + self.pos_start.expand(2 * B, self.first_l, -1)
lvl_pos = self.lvl_embed(self.lvl_1L) + self.pos_1LC
next_token_map = sos + lvl_pos[:, :self.first_l]
cur_L = 0
f_hat = sos.new_zeros(B, self.Cvae, self.patch_nums[-1], self.patch_nums[-1])
for b in self.blocks:
b.attn.kv_caching(True)
for si, pn in enumerate(self.patch_nums): # si: i-th segment
ratio = si / self.num_stages_minus_1
cur_L += pn * pn
cond_BD_or_gss = self.shared_ada_lin(cond_BD)
x = next_token_map
for b in self.blocks:
x = b(x=x, cond_BD=cond_BD_or_gss, attn_bias=None)
logits_BlV = self.get_logits(x, cond_BD)
t = cfg * ratio
logits_BlV = (1 + t) * logits_BlV[:B] - t * logits_BlV[B:]
idx_Bl = sample_with_top_k_top_p_(logits_BlV, rng=rng, top_k=top_k, top_p=top_p, num_samples=1)[:, :, 0]
if not more_smooth: # this is the default case
h_BChw = self.vae_quant_proxy[0].embedding(idx_Bl) # B, l, Cvae
else: # not used when evaluating FID/IS/Precision/Recall
gum_t = max(0.27 * (1 - ratio * 0.95), 0.005) # refer to mask-git
h_BChw = gumbel_softmax_with_rng(logits_BlV.mul(1 + ratio), tau=gum_t, hard=False, dim=-1, rng=rng) @ \
self.vae_quant_proxy[0].embedding.weight.unsqueeze(0)
h_BChw = h_BChw.transpose_(1, 2).reshape(B, self.Cvae, pn, pn)
f_hat, next_token_map = self.vae_quant_proxy[0].get_next_autoregressive_input(si, len(self.patch_nums),
f_hat, h_BChw)
if si != self.num_stages_minus_1: # prepare for next stage
next_token_map = next_token_map.view(B, self.Cvae, -1).transpose(1, 2)
next_token_map = self.word_embed(next_token_map) + lvl_pos[:,
cur_L:cur_L + self.patch_nums[si + 1] ** 2]
next_token_map = next_token_map.repeat(2, 1, 1) # double the batch sizes due to CFG
for b in self.blocks:
b.attn.kv_caching(False)
return self.vae_proxy[0].fhat_to_img(f_hat).add_(1).mul_(0.5) # de-normalize, from [-1, 1] to [0, 1]
def forward(self, label_B: torch.LongTensor, x_BLCv_wo_first_l: torch.Tensor, delta_condition: torch.Tensor,
alpha: float, beta: float) -> torch.Tensor:
"""
:param label_B: label_B
:param x_BLCv_wo_first_l: teacher forcing input (B, self.L-self.first_l, self.Cvae)
:param delta_condition: tensor of shape (B, D)
:param alpha: scalar weight for class embedding
:param beta: scalar weight for delta_condition
:return: logits BLV, V is vocab_size
"""
bg, ed = self.begin_ends[self.prog_si] if self.prog_si >= 0 else (0, self.L)
B = x_BLCv_wo_first_l.shape[0]
with torch.cuda.amp.autocast(enabled=False):
# Implement conditional dropout
drop_mask = torch.rand(B, device=label_B.device) < self.cond_drop_rate
label_B_dropped = torch.where(drop_mask, self.num_classes, label_B)
delta_condition_dropped = delta_condition.clone()
delta_condition_dropped[drop_mask] = 0.0 # Drop delta_condition
class_emb = self.class_emb(label_B_dropped)
cond_BD = alpha * class_emb + beta * delta_condition_dropped
sos = cond_BD.unsqueeze(1).expand(B, self.first_l, -1) + self.pos_start.expand(B, self.first_l, -1)
if self.prog_si == 0:
x_BLC = sos
else:
x_BLC = torch.cat((sos, self.word_embed(x_BLCv_wo_first_l.float())), dim=1)
x_BLC += self.lvl_embed(self.lvl_1L[:, :ed].expand(B, -1)) + self.pos_1LC[:, :ed] # lvl: BLC; pos: 1LC
attn_bias = self.attn_bias_for_masking[:, :, :ed, :ed]
cond_BD_or_gss = self.shared_ada_lin(cond_BD)
# hack: get the dtype if mixed precision is used
temp = x_BLC.new_ones(8, 8)
main_type = torch.matmul(temp, temp).dtype
x_BLC = x_BLC.to(dtype=main_type)
cond_BD_or_gss = cond_BD_or_gss.to(dtype=main_type)
attn_bias = attn_bias.to(dtype=main_type)
AdaLNSelfAttn.forward
for i, b in enumerate(self.blocks):
x_BLC = b(x=x_BLC, cond_BD=cond_BD_or_gss, attn_bias=attn_bias)
x_BLC = self.get_logits(x_BLC.float(), cond_BD)
if self.prog_si == 0:
if isinstance(self.word_embed, nn.Linear):
x_BLC[0, 0, 0] += self.word_embed.weight[0, 0] * 0 + self.word_embed.bias[0] * 0
else:
s = 0
for p in self.word_embed.parameters():
if p.requires_grad:
s += p.view(-1)[0] * 0
x_BLC[0, 0, 0] += s
return x_BLC # logits BLV, V is vocab_size
def init_weights(self, init_adaln=0.5, init_adaln_gamma=1e-5, init_head=0.02, init_std=0.02, conv_std_or_gain=0.02):
if init_std < 0: init_std = (1 / self.C / 3) ** 0.5 # init_std < 0: automated
print(f'[init_weights] {type(self).__name__} with {init_std=:g}')
for m in self.modules():
with_weight = hasattr(m, 'weight') and m.weight is not None
with_bias = hasattr(m, 'bias') and m.bias is not None
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight.data, std=init_std)
if with_bias: m.bias.data.zero_()
elif isinstance(m, nn.Embedding):
nn.init.trunc_normal_(m.weight.data, std=init_std)
if m.padding_idx is not None: m.weight.data[m.padding_idx].zero_()
elif isinstance(m, (
nn.LayerNorm, nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm, nn.GroupNorm,
nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d)):
if with_weight: m.weight.data.fill_(1.)
if with_bias: m.bias.data.zero_()
# conv: VAR has no conv, only VQVAE has conv
elif isinstance(m, (
nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.ConvTranspose1d, nn.ConvTranspose2d, nn.ConvTranspose3d)):
if conv_std_or_gain > 0:
nn.init.trunc_normal_(m.weight.data, std=conv_std_or_gain)
else:
nn.init.xavier_normal_(m.weight.data, gain=-conv_std_or_gain)
if with_bias: m.bias.data.zero_()
if init_head >= 0:
if isinstance(self.head, nn.Linear):
self.head.weight.data.mul_(init_head)
self.head.bias.data.zero_()
elif isinstance(self.head, nn.Sequential):
self.head[-1].weight.data.mul_(init_head)
self.head[-1].bias.data.zero_()
if isinstance(self.head_nm, AdaLNBeforeHead):
self.head_nm.ada_lin[-1].weight.data.mul_(init_adaln)
if hasattr(self.head_nm.ada_lin[-1], 'bias') and self.head_nm.ada_lin[-1].bias is not None:
self.head_nm.ada_lin[-1].bias.data.zero_()
depth = len(self.blocks)
for block_idx, sab in enumerate(self.blocks):
sab: AdaLNSelfAttn
sab.attn.proj.weight.data.div_(math.sqrt(2 * depth))
sab.ffn.fc2.weight.data.div_(math.sqrt(2 * depth))
if hasattr(sab.ffn, 'fcg') and sab.ffn.fcg is not None:
nn.init.ones_(sab.ffn.fcg.bias)
nn.init.trunc_normal_(sab.ffn.fcg.weight, std=1e-5)
if hasattr(sab, 'ada_lin'):
sab.ada_lin[-1].weight.data[2 * self.C:].mul_(init_adaln)
sab.ada_lin[-1].weight.data[:2 * self.C].mul_(init_adaln_gamma)
if hasattr(sab.ada_lin[-1], 'bias') and sab.ada_lin[-1].bias is not None:
sab.ada_lin[-1].bias.data.zero_()
elif hasattr(sab, 'ada_gss'):
sab.ada_gss.data[:, :, 2:].mul_(init_adaln)
sab.ada_gss.data[:, :, :2].mul_(init_adaln_gamma)
def extra_repr(self):
return f'drop_path_rate={self.drop_path_rate:g}'
class VARHF(VAR, PyTorchModelHubMixin):
def __init__(
self,
vae_kwargs,
num_classes=1000, depth=16, embed_dim=1024, num_heads=16, mlp_ratio=4., drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0.,
norm_eps=1e-6, shared_aln=False, cond_drop_rate=0.1,
attn_l2_norm=False,
patch_nums=(1, 2, 3, 4, 5, 6, 8, 10, 13, 16), # 10 steps by default
flash_if_available=True, fused_if_available=True,
):
vae_local = VQVAE(**vae_kwargs)
super().__init__(
vae_local=vae_local,
num_classes=num_classes, depth=depth, embed_dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio,
drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_rate=drop_path_rate,
norm_eps=norm_eps, shared_aln=shared_aln, cond_drop_rate=cond_drop_rate,
attn_l2_norm=attn_l2_norm,
patch_nums=patch_nums,
flash_if_available=flash_if_available, fused_if_available=fused_if_available,
)