Spaces:
Sleeping
Sleeping
from typing import List, Optional, Sequence, Tuple, Union | |
import numpy as np | |
import torch | |
from torch import distributed as tdist, nn as nn | |
from torch.nn import functional as F | |
import dist | |
# this file only provides the VectorQuantizer2 used in VQVAE | |
__all__ = ['VectorQuantizer2', ] | |
class VectorQuantizer2(nn.Module): | |
# VQGAN originally use beta=1.0, never tried 0.25; SD seems using 0.25 | |
def __init__( | |
self, vocab_size, Cvae, using_znorm, beta: float = 0.25, | |
default_qresi_counts=0, v_patch_nums=None, quant_resi=0.5, share_quant_resi=4, # share_quant_resi: args.qsr | |
): | |
super().__init__() | |
self.vocab_size: int = vocab_size | |
self.Cvae: int = Cvae | |
self.using_znorm: bool = using_znorm | |
self.v_patch_nums: Tuple[int] = v_patch_nums | |
self.quant_resi_ratio = quant_resi | |
if share_quant_resi == 0: # non-shared: \phi_{1 to K} for K scales | |
self.quant_resi = PhiNonShared( | |
[(Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity()) for _ in | |
range(default_qresi_counts or len(self.v_patch_nums))]) | |
elif share_quant_resi == 1: # fully shared: only a single \phi for K scales | |
self.quant_resi = PhiShared(Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity()) | |
else: # partially shared: \phi_{1 to share_quant_resi} for K scales | |
self.quant_resi = PhiPartiallyShared(nn.ModuleList( | |
[(Phi(Cvae, quant_resi) if abs(quant_resi) > 1e-6 else nn.Identity()) for _ in | |
range(share_quant_resi)])) | |
self.register_buffer('ema_vocab_hit_SV', torch.full((len(self.v_patch_nums), self.vocab_size), fill_value=0.0)) | |
self.record_hit = 0 | |
self.beta: float = beta | |
self.embedding = nn.Embedding(self.vocab_size, self.Cvae) | |
# only used for progressive training of VAR (not supported yet, will be tested and supported in the future) | |
self.prog_si = -1 # progressive training: not supported yet, prog_si always -1 | |
def eini(self, eini): | |
if eini > 0: | |
nn.init.trunc_normal_(self.embedding.weight.data, std=eini) | |
elif eini < 0: | |
self.embedding.weight.data.uniform_(-abs(eini) / self.vocab_size, abs(eini) / self.vocab_size) | |
def extra_repr(self) -> str: | |
return f'{self.v_patch_nums}, znorm={self.using_znorm}, beta={self.beta} | S={len(self.v_patch_nums)}, quant_resi={self.quant_resi_ratio}' | |
# ===================== `forward` is only used in VAE training ===================== | |
def forward(self, f_BChw: torch.Tensor, ret_usages=False) -> Tuple[torch.Tensor, List[float], torch.Tensor]: | |
dtype = f_BChw.dtype | |
if dtype != torch.float32: f_BChw = f_BChw.float() | |
B, C, H, W = f_BChw.shape | |
f_no_grad = f_BChw.detach() | |
f_rest = f_no_grad.clone() | |
f_hat = torch.zeros_like(f_rest) | |
with torch.cuda.amp.autocast(enabled=False): | |
mean_vq_loss: torch.Tensor = 0.0 | |
vocab_hit_V = torch.zeros(self.vocab_size, dtype=torch.float, device=f_BChw.device) | |
SN = len(self.v_patch_nums) | |
for si, pn in enumerate(self.v_patch_nums): # from small to large | |
# find the nearest embedding | |
if self.using_znorm: | |
rest_NC = F.interpolate(f_rest, size=(pn, pn), mode='bilinear').permute(0, 2, 3, 1).reshape(-1, | |
C) if ( | |
si != SN - 1) else f_rest.permute(0, 2, 3, 1).reshape(-1, C) | |
rest_NC = F.normalize(rest_NC, dim=-1) | |
idx_N = torch.argmax(rest_NC @ F.normalize(self.embedding.weight.data.T, dim=0), dim=1) | |
else: | |
rest_NC = F.interpolate(f_rest, size=(pn, pn), mode='bilinear').permute(0, 2, 3, 1).reshape(-1, | |
C) if ( | |
si != SN - 1) else f_rest.permute(0, 2, 3, 1).reshape(-1, C) | |
d_no_grad = torch.sum(rest_NC.square(), dim=1, keepdim=True) + torch.sum( | |
self.embedding.weight.data.square(), dim=1, keepdim=False) | |
d_no_grad.addmm_(rest_NC, self.embedding.weight.data.T, alpha=-2, beta=1) # (B*h*w, vocab_size) | |
idx_N = torch.argmin(d_no_grad, dim=1) | |
hit_V = idx_N.bincount(minlength=self.vocab_size).float() | |
if self.training: | |
if dist.initialized(): handler = tdist.all_reduce(hit_V, async_op=True) | |
# calc loss | |
idx_Bhw = idx_N.view(B, pn, pn) | |
h_BChw = F.interpolate(self.embedding(idx_Bhw).permute(0, 3, 1, 2), size=(H, W), | |
mode='bilinear').contiguous() if (si != SN - 1) else self.embedding( | |
idx_Bhw).permute(0, 3, 1, 2).contiguous() | |
h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) | |
f_hat = f_hat + h_BChw | |
f_rest -= h_BChw | |
if self.training and dist.initialized(): | |
handler.wait() | |
if self.record_hit == 0: | |
self.ema_vocab_hit_SV[si].copy_(hit_V) | |
elif self.record_hit < 100: | |
self.ema_vocab_hit_SV[si].mul_(0.9).add_(hit_V.mul(0.1)) | |
else: | |
self.ema_vocab_hit_SV[si].mul_(0.99).add_(hit_V.mul(0.01)) | |
self.record_hit += 1 | |
vocab_hit_V.add_(hit_V) | |
mean_vq_loss += F.mse_loss(f_hat.data, f_BChw).mul_(self.beta) + F.mse_loss(f_hat, f_no_grad) | |
mean_vq_loss *= 1. / SN | |
f_hat = (f_hat.data - f_no_grad).add_(f_BChw) | |
margin = tdist.get_world_size() * (f_BChw.numel() / f_BChw.shape[1]) / self.vocab_size * 0.08 | |
# margin = pn*pn / 100 | |
if ret_usages: | |
usages = [(self.ema_vocab_hit_SV[si] >= margin).float().mean().item() * 100 for si, pn in | |
enumerate(self.v_patch_nums)] | |
else: | |
usages = None | |
return f_hat, usages, mean_vq_loss | |
# ===================== `forward` is only used in VAE training ===================== | |
def embed_to_fhat(self, ms_h_BChw: List[torch.Tensor], all_to_max_scale=True, last_one=False) -> Union[ | |
List[torch.Tensor], torch.Tensor]: | |
ls_f_hat_BChw = [] | |
B = ms_h_BChw[0].shape[0] | |
H = W = self.v_patch_nums[-1] | |
SN = len(self.v_patch_nums) | |
if all_to_max_scale: | |
f_hat = ms_h_BChw[0].new_zeros(B, self.Cvae, H, W, dtype=torch.float32) | |
for si, pn in enumerate(self.v_patch_nums): # from small to large | |
h_BChw = ms_h_BChw[si] | |
if si < len(self.v_patch_nums) - 1: | |
h_BChw = F.interpolate(h_BChw, size=(H, W), mode='bilinear') | |
h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) | |
f_hat.add_(h_BChw) | |
if last_one: | |
ls_f_hat_BChw = f_hat | |
else: | |
ls_f_hat_BChw.append(f_hat.clone()) | |
else: | |
# WARNING: this is not the case in VQ-VAE training or inference (we'll interpolate every token map to the max H W, like above) | |
# WARNING: this should only be used for experimental purpose | |
f_hat = ms_h_BChw[0].new_zeros(B, self.Cvae, self.v_patch_nums[0], self.v_patch_nums[0], | |
dtype=torch.float32) | |
for si, pn in enumerate(self.v_patch_nums): # from small to large | |
f_hat = F.interpolate(f_hat, size=(pn, pn), mode='bilinear') | |
h_BChw = self.quant_resi[si / (SN - 1)](ms_h_BChw[si]) | |
f_hat.add_(h_BChw) | |
if last_one: | |
ls_f_hat_BChw = f_hat | |
else: | |
ls_f_hat_BChw.append(f_hat) | |
return ls_f_hat_BChw | |
def f_to_idxBl_or_fhat(self, f_BChw: torch.Tensor, to_fhat: bool, | |
v_patch_nums: Optional[Sequence[Union[int, Tuple[int, int]]]] = None) -> List[ | |
Union[torch.Tensor, torch.LongTensor]]: # z_BChw is the feature from inp_img_no_grad | |
B, C, H, W = f_BChw.shape | |
f_no_grad = f_BChw.detach() | |
f_rest = f_no_grad.clone() | |
f_hat = torch.zeros_like(f_rest) | |
f_hat_or_idx_Bl: List[torch.Tensor] = [] | |
patch_hws = [(pn, pn) if isinstance(pn, int) else (pn[0], pn[1]) for pn in | |
(v_patch_nums or self.v_patch_nums)] # from small to large | |
assert patch_hws[-1][0] == H and patch_hws[-1][1] == W, f'{patch_hws[-1]=} != ({H=}, {W=})' | |
SN = len(patch_hws) | |
for si, (ph, pw) in enumerate(patch_hws): # from small to large | |
if 0 <= self.prog_si < si: break # progressive training: not supported yet, prog_si always -1 | |
# find the nearest embedding | |
z_NC = F.interpolate(f_rest, size=(ph, pw), mode='bilinear').permute(0, 2, 3, 1).reshape(-1, C) if ( | |
si != SN - 1) else f_rest.permute(0, 2, 3, 1).reshape(-1, C) | |
if self.using_znorm: | |
z_NC = F.normalize(z_NC, dim=-1) | |
idx_N = torch.argmax(z_NC @ F.normalize(self.embedding.weight.data.T, dim=0), dim=1) | |
else: | |
d_no_grad = torch.sum(z_NC.square(), dim=1, keepdim=True) + torch.sum( | |
self.embedding.weight.data.square(), dim=1, keepdim=False) | |
d_no_grad.addmm_(z_NC, self.embedding.weight.data.T, alpha=-2, beta=1) # (B*h*w, vocab_size) | |
idx_N = torch.argmin(d_no_grad, dim=1) | |
idx_Bhw = idx_N.view(B, ph, pw) | |
h_BChw = F.interpolate(self.embedding(idx_Bhw).permute(0, 3, 1, 2), size=(H, W), | |
mode='bilinear').contiguous() if (si != SN - 1) else self.embedding(idx_Bhw).permute( | |
0, 3, 1, 2).contiguous() | |
h_BChw = self.quant_resi[si / (SN - 1)](h_BChw) | |
f_hat.add_(h_BChw) | |
f_rest.sub_(h_BChw) | |
f_hat_or_idx_Bl.append(f_hat.clone() if to_fhat else idx_N.reshape(B, ph * pw)) | |
return f_hat_or_idx_Bl | |
# ===================== idxBl_to_var_input: only used in VAR training, for getting teacher-forcing input ===================== | |
def idxBl_to_var_input(self, gt_ms_idx_Bl: List[torch.Tensor]) -> torch.Tensor: | |
next_scales = [] | |
B = gt_ms_idx_Bl[0].shape[0] | |
C = self.Cvae | |
H = W = self.v_patch_nums[-1] | |
SN = len(self.v_patch_nums) | |
f_hat = gt_ms_idx_Bl[0].new_zeros(B, C, H, W, dtype=torch.float32) | |
pn_next: int = self.v_patch_nums[0] | |
for si in range(SN - 1): | |
if self.prog_si == 0 or ( | |
0 <= self.prog_si - 1 < si): break # progressive training: not supported yet, prog_si always -1 | |
h_BChw = F.interpolate(self.embedding(gt_ms_idx_Bl[si]).transpose_(1, 2).view(B, C, pn_next, pn_next), | |
size=(H, W), mode='bilinear') | |
f_hat.add_(self.quant_resi[si / (SN - 1)](h_BChw)) | |
pn_next = self.v_patch_nums[si + 1] | |
next_scales.append( | |
F.interpolate(f_hat, size=(pn_next, pn_next), mode='bilinear').view(B, C, -1).transpose(1, 2)) | |
return torch.cat(next_scales, dim=1) if len(next_scales) else None # cat BlCs to BLC, this should be float32 | |
# ===================== get_next_autoregressive_input: only used in VAR inference, for getting next step's input ===================== | |
def get_next_autoregressive_input(self, si: int, SN: int, f_hat: torch.Tensor, h_BChw: torch.Tensor) -> Tuple[ | |
Optional[torch.Tensor], torch.Tensor]: # only used in VAR inference | |
HW = self.v_patch_nums[-1] | |
if si != SN - 1: | |
h = self.quant_resi[si / (SN - 1)]( | |
F.interpolate(h_BChw, size=(HW, HW), mode='bilinear')) # conv after upsample | |
f_hat.add_(h) | |
return f_hat, F.interpolate(f_hat, size=(self.v_patch_nums[si + 1], self.v_patch_nums[si + 1]), | |
mode='bilinear') | |
else: | |
h = self.quant_resi[si / (SN - 1)](h_BChw) | |
f_hat.add_(h) | |
return f_hat, f_hat | |
class Phi(nn.Conv2d): | |
def __init__(self, embed_dim, quant_resi): | |
ks = 3 | |
super().__init__(in_channels=embed_dim, out_channels=embed_dim, kernel_size=ks, stride=1, padding=ks // 2) | |
self.resi_ratio = abs(quant_resi) | |
def forward(self, h_BChw): | |
return h_BChw.mul(1 - self.resi_ratio) + super().forward(h_BChw).mul_(self.resi_ratio) | |
class PhiShared(nn.Module): | |
def __init__(self, qresi: Phi): | |
super().__init__() | |
self.qresi: Phi = qresi | |
def __getitem__(self, _) -> Phi: | |
return self.qresi | |
class PhiPartiallyShared(nn.Module): | |
def __init__(self, qresi_ls: nn.ModuleList): | |
super().__init__() | |
self.qresi_ls = qresi_ls | |
K = len(qresi_ls) | |
self.ticks = np.linspace(1 / 3 / K, 1 - 1 / 3 / K, K) if K == 4 else np.linspace(1 / 2 / K, 1 - 1 / 2 / K, K) | |
def __getitem__(self, at_from_0_to_1: float) -> Phi: | |
return self.qresi_ls[np.argmin(np.abs(self.ticks - at_from_0_to_1)).item()] | |
def extra_repr(self) -> str: | |
return f'ticks={self.ticks}' | |
class PhiNonShared(nn.ModuleList): | |
def __init__(self, qresi: List): | |
super().__init__(qresi) | |
# self.qresi = qresi | |
K = len(qresi) | |
self.ticks = np.linspace(1 / 3 / K, 1 - 1 / 3 / K, K) if K == 4 else np.linspace(1 / 2 / K, 1 - 1 / 2 / K, K) | |
def __getitem__(self, at_from_0_to_1: float) -> Phi: | |
return super().__getitem__(np.argmin(np.abs(self.ticks - at_from_0_to_1)).item()) | |
def extra_repr(self) -> str: | |
return f'ticks={self.ticks}' | |