Spaces:
Runtime error
Runtime error
import spacy_streamlit | |
import streamlit as st | |
import typer | |
from scripts.torch_ner_model import build_torch_ner_model | |
from scripts.torch_ner_pipe import make_torch_entity_recognizer | |
def main(models: str = None, default_text: str = None): | |
st.title('NER Predictor') | |
#st.header('Enter the characteristics of the diamond:') | |
#carat = st.number_input('Carat Weight:', min_value=0.1, max_value=10.0, value=1.0) | |
#cut = st.selectbox('Cut Rating:', ['Fair', 'Good', 'Very Good', 'Premium', 'Ideal']) | |
#color = st.selectbox('Color Rating:', ['J', 'I', 'H', 'G', 'F', 'E', 'D']) | |
#clarity = st.selectbox('Clarity Rating:', ['I1', 'SI2', 'SI1', 'VS2', 'VS1', 'VVS2', 'VVS1', 'IF']) | |
#depth = st.number_input('Diamond Depth Percentage:', min_value=0.1, max_value=100.0, value=1.0) | |
#table = st.number_input('Diamond Table Percentage:', min_value=0.1, max_value=100.0, value=1.0) | |
#x = st.number_input('Diamond Length (X) in mm:', min_value=0.1, max_value=100.0, value=1.0) | |
#y = st.number_input('Diamond Width (Y) in mm:', min_value=0.1, max_value=100.0, value=1.0) | |
#z = st.number_input('Diamond Height (Z) in mm:', min_value=0.1, max_value=100.0, value=1.0) | |
models = "training_trf/model-best" | |
default_text = "The patient had surgery." | |
models = [name.strip() for name in models.split(",")] | |
labels = ["person", "problem", "pronoun", "test", "treatment"] | |
#if st.button('Predict Price'): | |
# st.success(f'The predicted price of the diamond is USD') | |
spacy_streamlit.visualize(models, default_text, visualizers=["ner"], ner_labels=labels) | |
if __name__ == "__main__": | |
try: | |
typer.run(main) | |
except SystemExit: | |
pass | |