Spaces:
Runtime error
Runtime error
[paths] | |
train = "corpus/train.spacy" | |
dev = "corpus/dev.spacy" | |
raw = null | |
init_tok2vec = null | |
vectors = null | |
[system] | |
gpu_allocator = "pytorch" | |
seed = 0 | |
[nlp] | |
lang = "en" | |
pipeline = ["tok2vec","torch_ner"] | |
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} | |
before_creation = null | |
after_creation = null | |
after_pipeline_creation = null | |
disabled = [] | |
batch_size = 1000 | |
[components] | |
[components.tok2vec] | |
factory = "tok2vec" | |
[components.tok2vec.model] | |
@architectures = "spacy.Tok2Vec.v2" | |
[components.tok2vec.model.embed] | |
@architectures = "spacy.MultiHashEmbed.v2" | |
width = ${components.tok2vec.model.encode.width} | |
rows = [2000,1000,1000,1000] | |
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"] | |
include_static_vectors = false | |
[components.tok2vec.model.encode] | |
@architectures = "spacy.MaxoutWindowEncoder.v2" | |
width = 96 | |
depth = 4 | |
window_size = 1 | |
maxout_pieces = 3 | |
[components.torch_ner] | |
factory = "torch_ner" | |
[components.torch_ner.model] | |
@architectures = "TorchEntityRecognizer.v1" | |
nO = 11 | |
hidden_width = 48 | |
dropout = 0.2 | |
[components.torch_ner.model.tok2vec] | |
@architectures = "spacy.Tok2VecListener.v1" | |
width = ${components.tok2vec.model.encode.width} | |
upstream = "*" | |
[corpora] | |
[corpora.dev] | |
@readers = "spacy.Corpus.v1" | |
path = ${paths.dev} | |
max_length = 0 | |
gold_preproc = false | |
limit = 0 | |
augmenter = null | |
[corpora.train] | |
@readers = "spacy.Corpus.v1" | |
path = ${paths.train} | |
max_length = 2000 | |
gold_preproc = false | |
limit = 0 | |
augmenter = null | |
[training] | |
train_corpus = "corpora.train" | |
dev_corpus = "corpora.dev" | |
seed = ${system.seed} | |
gpu_allocator = ${system.gpu_allocator} | |
dropout = 0.1 | |
accumulate_gradient = 1 | |
patience = 1600 | |
max_epochs = 0 | |
max_steps = 50000 | |
eval_frequency = 200 | |
frozen_components = [] | |
before_to_disk = null | |
annotating_components = [] | |
[training.batcher] | |
@batchers = "spacy.batch_by_words.v1" | |
discard_oversize = false | |
tolerance = 0.2 | |
get_length = null | |
[training.batcher.size] | |
@schedules = "compounding.v1" | |
start = 100 | |
stop = 1000 | |
compound = 1.001 | |
t = 0.0 | |
[training.logger] | |
@loggers = "spacy.ConsoleLogger.v1" | |
progress_bar = false | |
[training.optimizer] | |
@optimizers = "Adam.v1" | |
beta1 = 0.9 | |
beta2 = 0.999 | |
L2_is_weight_decay = true | |
L2 = 0.01 | |
grad_clip = 1.0 | |
use_averages = false | |
eps = 0.00000001 | |
[training.optimizer.learn_rate] | |
@schedules = "warmup_linear.v1" | |
warmup_steps = 250 | |
total_steps = 50000 | |
initial_rate = 0.00005 | |
[training.score_weights] | |
ents_f = 1.0 | |
ents_p = 0.0 | |
ents_r = 0.0 | |
ents_per_type = null | |
[pretraining] | |
[initialize] | |
vectors = ${paths.vectors} | |
init_tok2vec = ${paths.init_tok2vec} | |
vocab_data = null | |
lookups = null | |
before_init = null | |
after_init = null | |
[initialize.components] | |
[initialize.tokenizer] |