AuditLLM / app.py
Amirizaniani's picture
Update app.py
023b429 verified
raw
history blame
15.4 kB
import gradio as gr
from dotenv import load_dotenv
from langchain_community.llms import CTransformers, HuggingFacePipeline, HuggingFaceHub
from langchain_core.prompts import PromptTemplate
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from sentence_transformers import SentenceTransformer, util
from sklearn.cluster import KMeans
import nltk
import pandas as pd
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.base import MIMEBase
from email import encoders
import os
from sendgrid import SendGridAPIClient
from sendgrid.helpers.mail import Mail, Attachment, FileContent, FileName, FileType, Disposition
nltk.download('punkt')
from nltk.tokenize import word_tokenize
from nltk import tokenize
import numpy as np
import scipy.spatial
import csv
load_dotenv()
def generate_prompts(user_input):
prompt_template = PromptTemplate(
input_variables=["Question"],
template=f"Just list 10 question prompts for {user_input} and don't put number before each of the prompts."
)
config = {'max_new_tokens': 64, 'temperature': 0.7, 'context_length': 64}
llm = CTransformers(model="TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
config=config)
hub_chain = LLMChain(prompt = prompt_template, llm = llm)
input_data = {"Question": user_input}
generated_prompts = hub_chain.run(input_data)
questions_list = generated_prompts.split('\n')
formatted_questions = "\n".join(f"Question: {question}" for i, question in enumerate(questions_list) if question.strip())
questions_list = formatted_questions.split("Question:")[1:]
return questions_list
def answer_question(prompt):
prompt_template = PromptTemplate(
input_variables=["Question"],
template=f"give one answer for {prompt} and do not consider the number behind it."
)
config = {'max_new_tokens': 64, 'temperature': 0.7, 'context_length': 64}
llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML",
config=config)
hub_chain = LLMChain(prompt = prompt_template, llm = llm)
input_data = {"Question": prompt}
generated_answer = hub_chain.run(input_data)
return generated_answer
def calculate_similarity(word, other_words, model, threshold=0.5):
embeddings_word = model.encode([word])
embeddings_other_words = model.encode(other_words)
for i, embedding in enumerate(embeddings_other_words):
similarity = 1 - scipy.spatial.distance.cosine(embeddings_word[0], embedding)
if similarity > threshold and similarity < 0.85:
return i, similarity
return None, None
def highlight_similar_paragraphs_with_colors(paragraphs, similarity_threshold=0.75):
model = SentenceTransformer('all-MiniLM-L6-v2')
# Split each paragraph into sentences
all_sentences = [tokenize.sent_tokenize(paragraph) for paragraph in paragraphs]
# Initialize storage for highlighted sentences
highlighted_sentences = [['' for sentence in para] for para in all_sentences]
colors = ['yellow', 'lightgreen', 'lightblue', 'pink', 'lavender', 'salmon', 'peachpuff', 'powderblue', 'khaki', 'wheat']
# Track which sentences belong to which paragraph
sentence_to_paragraph_index = [idx for idx, para in enumerate(all_sentences) for sentence in para]
# Encode all sentences into vectors
flattened_sentences = [sentence for para in all_sentences for sentence in para]
sentence_embeddings = model.encode(flattened_sentences)
# Calculate cosine similarities between all pairs of sentences
cosine_similarities = util.pytorch_cos_sim(sentence_embeddings, sentence_embeddings)
# Iterate through each sentence pair and highlight if they are similar but from different paragraphs
color_index = 0
for i, embedding_i in enumerate(sentence_embeddings):
for j, embedding_j in enumerate(sentence_embeddings):
if i != j and cosine_similarities[i, j] > similarity_threshold and sentence_to_paragraph_index[i] != sentence_to_paragraph_index[j]:
color = colors[color_index % len(colors)]
if highlighted_sentences[sentence_to_paragraph_index[i]][i % len(all_sentences[sentence_to_paragraph_index[i]])] == '':
highlighted_sentences[sentence_to_paragraph_index[i]][i % len(all_sentences[sentence_to_paragraph_index[i]])] = ("<span style='color: "+ color +"'>"+ flattened_sentences[i]+"</span>")
if highlighted_sentences[sentence_to_paragraph_index[j]][j % len(all_sentences[sentence_to_paragraph_index[j]])] == '':
highlighted_sentences[sentence_to_paragraph_index[j]][j % len(all_sentences[sentence_to_paragraph_index[j]])] = ("<span style='color: "+ color +"'>"+ flattened_sentences[j]+"</span>")
color_index += 1 # Move to the next color
# Combine sentences back into paragraphs
highlighted_paragraphs = [' '.join(para) for para in highlighted_sentences]
# Combine all paragraphs into one HTML string
html_output = '<div>' + '<br/><br/>'.join(highlighted_paragraphs) + '</div>'
return highlighted_paragraphs
def calculate_similarity_score(sentences):
# Encode all sentences to get their embeddings
model = SentenceTransformer('all-MiniLM-L6-v2')
embeddings = model.encode(sentences)
# Calculate average cosine similarity
total_similarity = 0
comparisons = 0
for i in range(len(embeddings)):
for j in range(i+1, len(embeddings)):
# Cosine similarity between embeddings
similarity = 1 - cosine(embeddings[i], embeddings[j])
total_similarity += similarity
comparisons += 1
# Average similarity
average_similarity = total_similarity / comparisons if comparisons > 0 else 0
# Scale from [-1, 1] to [0, 100]
score_out_of_100 = (average_similarity + 1) / 2 * 100
return score_out_of_100
def answer_question(prompt):
prompt_template = PromptTemplate.from_template(
input_variables=["Question"],
template=f"give one answer for {prompt} and do not consider the number behind it."
)
config = {'max_new_tokens': 2048, 'temperature': 0.7, 'context_length': 4096}
llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML",
config=config,
threads=os.cpu_count())
hub_chain = LLMChain(prompt = prompt_template, llm = llm)
input_data = {"Question": prompt}
generated_answer = hub_chain.run(input_data)
return generated_answer
def process_inputs(llm, file, relevance, diversity, email):
# Check if file is uploaded
if file is not None:
# Read questions from the uploaded Excel file
try:
df = pd.read_excel(file.name, engine='openpyxl')
except Exception as e:
return f"Failed to read Excel file: {e}"
# Ensure that there is only one column in the file
if df.shape[1] != 1:
return "The uploaded file must contain only one column of questions."
questions_list = df.iloc[:, 0].tolist()
else:
return "No questions provided."
# Save questions to a CSV file
df = pd.DataFrame(questions_list, columns=["Questions"])
csv_file = "questions.csv"
df.to_csv(csv_file, index=False)
# Check network connectivity
try:
socket.create_connection(("smtp.gmail.com", 2525), timeout=10)
except OSError:
return "Network is unreachable. Unable to send email."
# Email the CSV file
sender_email = "auditllms@gmail.com"
sender_password = "opri fcxx crkh bvfj"
receiver_email = email
subject = "Your Submitted Questions"
body = "Thank you for your submission. Please find attached the CSV file containing your questions."
message = MIMEMultipart()
message['From'] = sender_email
message['To'] = receiver_email
message['Subject'] = subject
message.attach(MIMEText(body, 'plain'))
with open(csv_file, "rb") as attachment:
part = MIMEBase('application', 'octet-stream')
part.set_payload(attachment.read())
encoders.encode_base64(part)
part.add_header('Content-Disposition', f"attachment; filename= questions.csv")
message.attach(part)
try:
with smtplib.SMTP('smtp.gmail.com', 2525) as server: # Port 2525 used for SMTP submission
server.starttls() # Upgrade the connection to a secure encrypted SSL/TLS connection
server.login(sender_email, sender_password)
server.sendmail(sender_email, receiver_email, message.as_string())
except Exception as e:
return f"Failed to send email: {e}"
return "Submitted"
text_list = []
def updateChoices(prompt):
newChoices = generate_prompts(prompt)
return gr.CheckboxGroup(choices=newChoices)
def setTextVisibility(cbg, model_name_input):
sentences = [answer_question(text, model_name_input) for text in cbg]
# Apply highlighting to all processed sentences, receiving one complete HTML string.
highlighted_html = []
highlighted_html = highlight_similar_paragraphs_with_colors(sentences, similarity_threshold=0.75)
result = []
# Iterate through each original 'cbg' sentence and pair it with the entire highlighted block.
for idx, sentence in enumerate(highlighted_html):
result.append("<p><strong>"+ cbg[idx] +"</strong></p><p>"+ sentence +"</p><br/>")
score = round(calculate_similarity_score(highlighted_html))
final_html = f"""<div>{result}<div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score: {score}</div></div>"""
return final_html
# update_show = [gr.Textbox(visible=True, label=text, value=answer_question(text, model_name_input)) for text in cbg]
# update_hide = [gr.Textbox(visible=False, label="") for _ in range(10-len(cbg))]
# return update_show + update_hide
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; max-width: 1240px; margin: 0 auto;">
<h1 style="font-weight: 200; font-size: 20px; margin-bottom:8px; margin-top:0px;">
AuditLLM
</h1>
<hr style="margin-bottom:5px; margin-top:5px;">
</div>
""")
with gr.Tab("Live Mode"):
gr.HTML("""
<div>
<h4> Live Mode Auditing LLMs <h4>
<div>
<div style = "font-size: 13px;">
<p><In Live Auditing Mode, you gain the ability to probe the LLM directly./p>
<p>First, select the LLM you wish to audit. Then, enter your question. The AuditLLM tool will generate five relevant and diverse prompts based on your question. You can now select these prompts for auditing the LLMs. Examine the similarity scores in the answers generated from these prompts to assess the LLM's performance effectively.</p>
</div>
""")
with gr.Row():
model_name_input = gr.Dropdown([("Llama", "TheBloke/Llama-2-7B-Chat-GGML"), ("Falcon", "TheBloke/Falcon-180B-Chat-GGUF"), ("Zephyr", "TheBloke/zephyr-quiklang-3b-4K-GGUF"),("Vicuna", "TheBloke/vicuna-33B-GGUF"),("Claude","TheBloke/claude2-alpaca-13B-GGUF"),("Alpaca","TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], label="Large Language Model")
with gr.Row():
prompt_input = gr.Textbox(label="Enter your question", placeholder="Enter Your Question")
with gr.Row():
generate_button = gr.Button("Generate", variant="primary", min_width=300)
with gr.Column():
cbg = gr.CheckboxGroup(choices=[], label="List of the prompts", interactive=True)
generate_button.click(updateChoices, inputs=[prompt_input], outputs=[cbg])
with gr.Row() as exec:
btnExec = gr.Button("Execute", variant="primary", min_width=200)
with gr.Column() as texts:
for i in range(10):
text = gr.Textbox(label="_", visible=False)
text_list.append(text)
with gr.Column():
html_result = gr.HTML("""<div style="color: red"></div>""")
#btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=text_list)
btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=html_result)
gr.HTML("""
<div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score: </div>
""")
clear = gr.ClearButton(link = "http://127.0.0.1:7865")
with gr.Tab("Batch Mode"):
gr.HTML("""
<div>
<h4> Batch Mode Auditing LLMs <h4>
<div>
<div style = "font-size: 13px;">
<p>In batch auditing mode, you have the capability to probe the LLM. To begin, you must first select the LLM you wish to audit and then input the questions you intend to explore. For each question submitted, the model will generate five prompts, each accompanied by its respective answers.</p>
<p>To tailor the generation of these five prompts from your original question, you can adjust the relevance and diversity scores. The relevance score determines how closely the generated prompts should align with the original question, while the diversity score dictates the variance among the prompts themselves.</p>
<p>Upon completion, please provide your email address. We will compile and send the answers to you promptly.</p>
</div>
""")
gr.Markdown("## Batch Mode Auditing LLMs")
gr.Markdown("In batch auditing mode, you have the capability to probe the LLM. To begin, you must first select the LLM you wish to audit and then input the questions you intend to explore. For each question submitted, the model will generate five prompts, each accompanied by its respective answers.")
gr.Markdown("To tailor the generation of these five prompts from your original question, you can adjust the relevance and diversity scores. The relevance score determines how closely the generated prompts should align with the original question, while the diversity score dictates the variance among the prompts themselves.")
gr.Markdown("Upon completion, please provide your email address. We will compile and send the answers to you promptly.")
llm_dropdown = gr.Dropdown([("Llama", "TheBloke/Llama-2-7B-Chat-GGML"), ("Falcon", "TheBloke/Falcon-180B-Chat-GGUF"), ("Zephyr", "TheBloke/zephyr-quiklang-3b-4K-GGUF"), ("Vicuna", "TheBloke/vicuna-33B-GGUF"), ("Claude", "TheBloke/claude2-alpaca-13B-GGUF"), ("Alpaca", "TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], label="Large Language Model")
file_upload = gr.File(label="Upload a File with Questions", file_types=["csv"])
relevance_slider = gr.Slider(0, 100, value=70, step=1, label="Relevance")
diversity_slider = gr.Slider(0, 100, value=25, step=1, label="Diversity")
email_input = gr.Textbox(label="Enter your email address", placeholder="name@example.com")
submit_button = gr.Button("Submit")
output_textbox = gr.Textbox(label="Output")
submit_button.click(fn=process_inputs, inputs=[llm_dropdown, file_upload, relevance_slider, diversity_slider, email_input], outputs=output_textbox)
# Launch the Gradio app
demo.launch()