Spaces:
Running
Running
import pandas as pd | |
import panel as pn | |
from datetime import datetime | |
from datetime import date | |
pn.extension('bokeh', template='bootstrap') | |
import hvplot.pandas | |
import pandas as pd | |
import yfinance as yf | |
import panel as pn | |
def get_df(ticker, startdate , enddate , interval="1d",window=50,window2=150): | |
# interval="1d" | |
# get_df(ticker ="PG", startdate="2000-01-01" , enddate="2023-09-01" , interval="1d") | |
DF = yf.Ticker(ticker).history(start=startdate,end=enddate,interval=interval) | |
DF['SMA'] = DF.Close.rolling(window=window).mean() | |
DF['SMA2'] = DF.Close.rolling(window=window2).mean() | |
DF = DF.reset_index() | |
return DF | |
def get_hvplot(ticker , startdate , enddate , interval,window,window2): | |
DF = get_df(ticker , startdate=startdate , enddate=enddate , interval=interval,window=window,window2=window2) | |
import hvplot.pandas # Ensure hvplot is installed (pip install hvplot) | |
from sklearn.linear_model import LinearRegression | |
import holoviews as hv | |
hv.extension('bokeh') | |
# Assuming your dataframe is named 'df' with columns 'Date' and 'Close' | |
# If not, replace 'Date' and 'Close' with your actual column names. | |
# Step 1: Create a scatter plot using hvplot | |
scatter_plot = DF.hvplot(x='Date', y='Close', kind='scatter',title=f'{ticker} Close vs. Date') | |
# Step 2: Fit a linear regression model | |
DF['Date2'] = pd.to_numeric(DF['Date']) | |
X = DF[['Date2']] | |
y = DF[['Close']] #.values | |
model = LinearRegression().fit(X, y) | |
# # Step 3: Predict using the linear regression model | |
DF['Predicted_Close'] = model.predict(X) | |
# # Step 4: Create a line plot for linear regression | |
line_plot = DF.hvplot(x='Date', y='Predicted_Close', kind='line',line_dash='dashed', color='red') | |
line_plot_SMA = DF.hvplot(x='Date', y='SMA', kind='line',line_dash='dashed', color='orange') | |
line_plot_SMA2 = DF.hvplot(x='Date', y='SMA2', kind='line',line_dash='dashed', color='orange') | |
# # Step 5: Overlay scatter plot and linear regression line | |
# return (scatter_plot * line_plot).opts(width=800, height=600, show_grid=True, gridstyle={ 'grid_line_color': 'gray'}) | |
# grid_style = {'grid_line_color': 'black'}#, 'grid_line_width': 1.5, 'ygrid_bounds': (0.3, 0.7),'minor_xgrid_line_color': 'lightgray', 'xgrid_line_dash': [4, 4]} | |
return (scatter_plot * line_plot *line_plot_SMA *line_plot_SMA2).opts(width=800, height=600, show_grid=True) | |
def get_income_statement_df(ticker): | |
yfobj = yf.Ticker(ticker) | |
df= yfobj.financials.T | |
df.index = pd.to_datetime(df.index, format='%Y-%m-%d') | |
return df | |
def get_income_hvplot(ticker): | |
DF = get_income_statement_df(ticker) | |
plt1 = DF.hvplot.line(y='Total Revenue') * DF.hvplot.scatter(y='Total Revenue').opts(color="red") | |
plt1.opts(width=600, height=450, show_grid=True) | |
plt2 = DF.hvplot.line(y='Gross Profit') * DF.hvplot.scatter(y='Gross Profit').opts(color="red") | |
plt2.opts(width=600, height=450, show_grid=True) | |
plt3 = DF.hvplot.line(y='Net Income') * DF.hvplot.scatter(y='Net Income').opts(color="red") | |
plt3.opts(width=600, height=450, show_grid=True) | |
return pn.Column(plt1 , plt2 , plt3 ) | |
# return ( DF.hvplot.line(y='Net Income') * DF.hvplot.scatter(y='Net Income').opts(color="red") )+ (DF.hvplot.line(y='Gross Profit') * DF.hvplot.scatter(y='Gross Profit').opts(color="red") )+ | |
# (DF.hvplot.line(y='Total Revenue') * DF.hvplot.scatter(y='Total Revenue').opts(color="red") ) | |
def lookup_discountedrate(betavalue): | |
betavsdiscountedrate = {1: 5, 1: 6, 1.1: 6.5, 1.2: 7, 1.3: 7.5, 1.4: 8, 1.5: 8.5, 1.6: 9} | |
if betavalue < 1: | |
return betavsdiscountedrate[1] # Return the value for key 1 if key is below 1 | |
elif betavalue > 1.6: | |
return betavsdiscountedrate[1.6] # Return the value for key 1.6 if key is above 1.6 | |
else: | |
# Find the closest key to the given key | |
closest_key = min(betavsdiscountedrate.keys(), key=lambda x: abs(x - betavalue)) | |
# Get the corresponding value | |
value = betavsdiscountedrate[closest_key] | |
return value | |
def calc_fairprice_CDF(ticker): | |
import yfinance as yf | |
yfobj = yf.Ticker(ticker) | |
#calculate eps growing next 5 years | |
EPSnext5Y = yfobj.get_info()['trailingPE'] / yfobj.get_info()['trailingPegRatio'] | |
years = 10 | |
# | |
cashflowinitial = yfobj.get_info()['operatingCashflow'] | |
cashflowlst=[] | |
cashflow = cashflowinitial | |
for i in range(1,years+1): | |
cashflow = cashflow*(1+EPSnext5Y/100) | |
cashflowlst.append(cashflow) | |
try: | |
discountedrate = lookup_discountedrate(yfobj.get_info()['beta']) | |
except: | |
discountedrate = 5 | |
discountedfactorlst =[] | |
discountedvaluelst=[] | |
discountedfactor =1 | |
for i in range(1,years+1): | |
discountedfactor =( 1 / (1+ discountedrate/100)**i) | |
discountedfactorlst.append(discountedfactor) | |
discountedvalue = discountedfactor * cashflowlst[i-1] | |
discountedvaluelst.append(discountedvalue) | |
PV10yearsCashFlow =0 | |
for i in range(0,years): | |
PV10yearsCashFlow += discountedvaluelst[i] | |
#intrinsic value before cash/debt | |
intrinsicvaluebeforecashdebt = PV10yearsCashFlow / yfobj.get_info()['sharesOutstanding'] | |
debtpershare = yfobj.get_info()['totalDebt'] / yfobj.get_info()['sharesOutstanding'] | |
cashpershare = yfobj.get_info()['totalCash'] / yfobj.get_info()['sharesOutstanding'] | |
intrinsicvalue = intrinsicvaluebeforecashdebt + cashpershare - debtpershare | |
previousClose = yfobj.get_info()['previousClose'] | |
deviation = 100*(intrinsicvalue - previousClose) / previousClose | |
# return intrinsicvalue , previousClose , deviation | |
return pn.Row(pn.widgets.StaticText(name='fairprice_CDF', value=str(round(intrinsicvalue,1))) ,pn.widgets.StaticText(name='deviation', value=str(round(deviation,2))) ) | |
def calc_fairprice_DnetP(ticker): | |
import yfinance as yf | |
yfobj = yf.Ticker(ticker) | |
#calculate eps growing next 5 years | |
EPSnext5Y = yfobj.get_info()['trailingPE'] / yfobj.get_info()['trailingPegRatio'] | |
years = 5 | |
# | |
cashflowinitial = yfobj.get_info()['netIncomeToCommon'] | |
cashflowlst=[] | |
cashflow = cashflowinitial | |
for i in range(1,years+1): | |
cashflow = cashflow*(1+EPSnext5Y/100) | |
cashflowlst.append(cashflow) | |
try: | |
discountedrate = lookup_discountedrate(yfobj.get_info()['beta']) | |
except: | |
discountedrate = 5 | |
discountedfactorlst =[] | |
discountedvaluelst=[] | |
discountedfactor =1 | |
for i in range(1,years+1): | |
discountedfactor =( 1 / (1+ discountedrate/100)**i) | |
discountedfactorlst.append(discountedfactor) | |
discountedvalue = discountedfactor * cashflowlst[i-1] | |
discountedvaluelst.append(discountedvalue) | |
PV10yearsCashFlow =0 | |
for i in range(0,years): | |
PV10yearsCashFlow += discountedvaluelst[i] | |
#intrinsic value before cash/debt | |
intrinsicvaluebeforecashdebt = PV10yearsCashFlow / yfobj.get_info()['sharesOutstanding'] | |
debtpershare = yfobj.get_info()['totalDebt'] / yfobj.get_info()['sharesOutstanding'] | |
cashpershare = yfobj.get_info()['totalCash'] / yfobj.get_info()['sharesOutstanding'] | |
intrinsicvalue = intrinsicvaluebeforecashdebt + cashpershare - debtpershare | |
previousClose = yfobj.get_info()['previousClose'] | |
intrinsicvalue= intrinsicvalue + previousClose | |
deviation = 100*(intrinsicvalue - previousClose) / previousClose | |
# return intrinsicvalue , previousClose , deviation | |
return pn.Row(pn.widgets.StaticText(name='fairprice_DnetP', value=str(round(intrinsicvalue,1))) , pn.widgets.StaticText(name='deviation', value=str(round(deviation,2))) ) | |
# tickers = ['AAPL', 'META', 'GOOG', 'IBM', 'MSFT','NKE','DLTR','DG'] | |
# ticker = pn.widgets.Select(name='Ticker', options=tickers) | |
tickers = pd.read_csv('tickers.csv').Ticker.to_list() | |
ticker = pn.widgets.AutocompleteInput(name='Ticker', options=tickers , placeholder='Write Ticker here همین جا') | |
ticker.value = "AAPL" | |
window = pn.widgets.IntSlider(name='Window Size', value=50, start=5, end=1000, step=5) | |
window2 = pn.widgets.IntSlider(name='Window Size2', value=150, start=5, end=1000, step=5) | |
# Create a DatePicker widget with a minimum date of 2000-01-01 | |
date_start = pn.widgets.DatePicker( | |
name ="Start Date", | |
description='Select a Date', | |
start= date(2000, 1, 1) | |
) | |
date_end = pn.widgets.DatePicker( | |
name ="End Date",# value=datetime(2000, 1, 1), | |
description='Select a Date', | |
end= date.today() #date(2023, 9, 1) | |
) | |
date_start.value = date(2010,1,1) | |
date_end.value = date.today() | |
pn.Row( | |
pn.Column( ticker, window , window2, date_start , date_end), | |
# pn.bind(calc_fairprice_CDF,ticker), | |
# pn.bind(calc_fairprice_DnetP,ticker)), | |
# pn.panel(pn.bind(get_hvplot, ticker, "2010-01-01","2023-09-01","1d")) #, sizing_mode='stretch_width') | |
pn.panel(pn.bind(get_hvplot, ticker, date_start , date_end,"1d",window,window2)), #, sizing_mode='stretch_width') | |
pn.panel(pn.bind(get_income_hvplot, ticker)) #, sizing_mode='stretch_width') | |
).servable(title="Under Valued Screener- Linear Regression") | |