Spaces:
Sleeping
Sleeping
| from __future__ import annotations | |
| import os | |
| import gc | |
| from tqdm import tqdm | |
| import wandb | |
| import torch | |
| from torch.optim import AdamW | |
| from torch.optim.lr_scheduler import LinearLR, SequentialLR, ConstantLR | |
| from accelerate import Accelerator | |
| from accelerate.utils import DistributedDataParallelKwargs | |
| from diffrhythm.dataset.custom_dataset_align2f5 import LanceDiffusionDataset | |
| from torch.utils.data import DataLoader, DistributedSampler | |
| from ema_pytorch import EMA | |
| from diffrhythm.model import CFM | |
| from diffrhythm.model.utils import exists, default | |
| import time | |
| # from apex.optimizers.fused_adam import FusedAdam | |
| # trainer | |
| class Trainer: | |
| def __init__( | |
| self, | |
| model: CFM, | |
| args, | |
| epochs, | |
| learning_rate, | |
| #dataloader, | |
| num_warmup_updates=20000, | |
| save_per_updates=1000, | |
| checkpoint_path=None, | |
| batch_size=32, | |
| batch_size_type: str = "sample", | |
| max_samples=32, | |
| grad_accumulation_steps=1, | |
| max_grad_norm=1.0, | |
| noise_scheduler: str | None = None, | |
| duration_predictor: torch.nn.Module | None = None, | |
| wandb_project="test_e2-tts", | |
| wandb_run_name="test_run", | |
| wandb_resume_id: str = None, | |
| last_per_steps=None, | |
| accelerate_kwargs: dict = dict(), | |
| ema_kwargs: dict = dict(), | |
| bnb_optimizer: bool = False, | |
| reset_lr: bool = False, | |
| use_style_prompt: bool = False, | |
| grad_ckpt: bool = False | |
| ): | |
| self.args = args | |
| ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False, ) | |
| logger = "wandb" if wandb.api.api_key else None | |
| #logger = None | |
| print(f"Using logger: {logger}") | |
| # print("-----------1-------------") | |
| import tbe.common | |
| # print("-----------2-------------") | |
| self.accelerator = Accelerator( | |
| log_with=logger, | |
| kwargs_handlers=[ddp_kwargs], | |
| gradient_accumulation_steps=grad_accumulation_steps, | |
| **accelerate_kwargs, | |
| ) | |
| # print("-----------3-------------") | |
| if logger == "wandb": | |
| if exists(wandb_resume_id): | |
| init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}} | |
| else: | |
| init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}} | |
| self.accelerator.init_trackers( | |
| project_name=wandb_project, | |
| init_kwargs=init_kwargs, | |
| config={ | |
| "epochs": epochs, | |
| "learning_rate": learning_rate, | |
| "num_warmup_updates": num_warmup_updates, | |
| "batch_size": batch_size, | |
| "batch_size_type": batch_size_type, | |
| "max_samples": max_samples, | |
| "grad_accumulation_steps": grad_accumulation_steps, | |
| "max_grad_norm": max_grad_norm, | |
| "gpus": self.accelerator.num_processes, | |
| "noise_scheduler": noise_scheduler, | |
| }, | |
| ) | |
| self.precision = self.accelerator.state.mixed_precision | |
| self.precision = self.precision.replace("no", "fp32") | |
| print("!!!!!!!!!!!!!!!!!", self.precision) | |
| self.model = model | |
| #self.model = torch.compile(model) | |
| #self.dataloader = dataloader | |
| if self.is_main: | |
| self.ema_model = EMA(model, include_online_model=False, **ema_kwargs) | |
| self.ema_model.to(self.accelerator.device) | |
| if self.accelerator.state.distributed_type in ["DEEPSPEED", "FSDP"]: | |
| self.ema_model.half() | |
| self.epochs = epochs | |
| self.num_warmup_updates = num_warmup_updates | |
| self.save_per_updates = save_per_updates | |
| self.last_per_steps = default(last_per_steps, save_per_updates * grad_accumulation_steps) | |
| self.checkpoint_path = default(checkpoint_path, "ckpts/test_e2-tts") | |
| self.max_samples = max_samples | |
| self.grad_accumulation_steps = grad_accumulation_steps | |
| self.max_grad_norm = max_grad_norm | |
| self.noise_scheduler = noise_scheduler | |
| self.duration_predictor = duration_predictor | |
| self.reset_lr = reset_lr | |
| self.use_style_prompt = use_style_prompt | |
| self.grad_ckpt = grad_ckpt | |
| if bnb_optimizer: | |
| import bitsandbytes as bnb | |
| self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate) | |
| else: | |
| self.optimizer = AdamW(model.parameters(), lr=learning_rate) | |
| #self.optimizer = FusedAdam(model.parameters(), lr=learning_rate) | |
| #self.model = torch.compile(self.model) | |
| if self.accelerator.state.distributed_type == "DEEPSPEED": | |
| self.accelerator.state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = batch_size | |
| self.get_dataloader() | |
| self.get_scheduler() | |
| # self.get_constant_scheduler() | |
| self.model, self.optimizer, self.scheduler, self.train_dataloader = self.accelerator.prepare(self.model, self.optimizer, self.scheduler, self.train_dataloader) | |
| def get_scheduler(self): | |
| warmup_steps = ( | |
| self.num_warmup_updates * self.accelerator.num_processes | |
| ) # consider a fixed warmup steps while using accelerate multi-gpu ddp | |
| total_steps = len(self.train_dataloader) * self.epochs / self.grad_accumulation_steps | |
| decay_steps = total_steps - warmup_steps | |
| warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps) | |
| decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps) | |
| # constant_scheduler = ConstantLR(self.optimizer, factor=1, total_iters=decay_steps) | |
| self.scheduler = SequentialLR( | |
| self.optimizer, schedulers=[warmup_scheduler, decay_scheduler], milestones=[warmup_steps] | |
| ) | |
| def get_constant_scheduler(self): | |
| total_steps = len(self.train_dataloader) * self.epochs / self.grad_accumulation_steps | |
| self.scheduler = ConstantLR(self.optimizer, factor=1, total_iters=total_steps) | |
| def get_dataloader(self): | |
| prompt_path = self.args.prompt_path.split('|') | |
| lrc_path = self.args.lrc_path.split('|') | |
| latent_path = self.args.latent_path.split('|') | |
| ldd = LanceDiffusionDataset(*LanceDiffusionDataset.init_data(self.args.dataset_path), \ | |
| max_frames=self.args.max_frames, min_frames=self.args.min_frames, \ | |
| align_lyrics=self.args.align_lyrics, lyrics_slice=self.args.lyrics_slice, \ | |
| use_style_prompt=self.args.use_style_prompt, parse_lyrics=self.args.parse_lyrics, | |
| lyrics_shift=self.args.lyrics_shift, downsample_rate=self.args.downsample_rate, \ | |
| skip_empty_lyrics=self.args.skip_empty_lyrics, tokenizer_type=self.args.tokenizer_type, precision=self.precision, \ | |
| start_time=time.time(), pure_prob=self.args.pure_prob) | |
| # start_time = time.time() | |
| self.train_dataloader = DataLoader( | |
| dataset=ldd, | |
| batch_size=self.args.batch_size, # 每个批次的样本数 | |
| shuffle=True, # 是否随机打乱数据 | |
| num_workers=4, # 用于加载数据的子进程数 | |
| pin_memory=True, # 加速GPU训练 | |
| collate_fn=ldd.custom_collate_fn, | |
| persistent_workers=True | |
| ) | |
| def is_main(self): | |
| return self.accelerator.is_main_process | |
| def save_checkpoint(self, step, last=False): | |
| self.accelerator.wait_for_everyone() | |
| if self.is_main: | |
| checkpoint = dict( | |
| model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(), | |
| optimizer_state_dict=self.accelerator.unwrap_model(self.optimizer).state_dict(), | |
| ema_model_state_dict=self.ema_model.state_dict(), | |
| scheduler_state_dict=self.scheduler.state_dict(), | |
| step=step, | |
| ) | |
| if not os.path.exists(self.checkpoint_path): | |
| os.makedirs(self.checkpoint_path) | |
| if last: | |
| self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt") | |
| print(f"Saved last checkpoint at step {step}") | |
| else: | |
| self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{step}.pt") | |
| def load_checkpoint(self): | |
| if ( | |
| not exists(self.checkpoint_path) | |
| or not os.path.exists(self.checkpoint_path) | |
| or not os.listdir(self.checkpoint_path) | |
| ): | |
| return 0 | |
| self.accelerator.wait_for_everyone() | |
| if "model_last.pt" in os.listdir(self.checkpoint_path): | |
| latest_checkpoint = "model_last.pt" | |
| else: | |
| latest_checkpoint = sorted( | |
| [f for f in os.listdir(self.checkpoint_path) if f.endswith(".pt")], | |
| key=lambda x: int("".join(filter(str.isdigit, x))), | |
| )[-1] | |
| checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location="cpu") | |
| ### **1. 过滤 `ema_model` 的不匹配参数** | |
| if self.is_main: | |
| ema_dict = self.ema_model.state_dict() | |
| ema_checkpoint_dict = checkpoint["ema_model_state_dict"] | |
| filtered_ema_dict = { | |
| k: v for k, v in ema_checkpoint_dict.items() | |
| if k in ema_dict and ema_dict[k].shape == v.shape # 仅加载 shape 匹配的参数 | |
| } | |
| print(f"Loading {len(filtered_ema_dict)} / {len(ema_checkpoint_dict)} ema_model params") | |
| self.ema_model.load_state_dict(filtered_ema_dict, strict=False) | |
| ### **2. 过滤 `model` 的不匹配参数** | |
| model_dict = self.accelerator.unwrap_model(self.model).state_dict() | |
| checkpoint_model_dict = checkpoint["model_state_dict"] | |
| filtered_model_dict = { | |
| k: v for k, v in checkpoint_model_dict.items() | |
| if k in model_dict and model_dict[k].shape == v.shape # 仅加载 shape 匹配的参数 | |
| } | |
| print(f"Loading {len(filtered_model_dict)} / {len(checkpoint_model_dict)} model params") | |
| self.accelerator.unwrap_model(self.model).load_state_dict(filtered_model_dict, strict=False) | |
| ### **3. 加载优化器、调度器和步数** | |
| if "step" in checkpoint: | |
| if self.scheduler and not self.reset_lr: | |
| self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"]) | |
| step = checkpoint["step"] | |
| else: | |
| step = 0 | |
| del checkpoint | |
| gc.collect() | |
| print("Checkpoint loaded at step", step) | |
| return step | |
| def train(self, resumable_with_seed: int = None): | |
| train_dataloader = self.train_dataloader | |
| start_step = self.load_checkpoint() | |
| global_step = start_step | |
| if resumable_with_seed > 0: | |
| orig_epoch_step = len(train_dataloader) | |
| skipped_epoch = int(start_step // orig_epoch_step) | |
| skipped_batch = start_step % orig_epoch_step | |
| skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch) | |
| else: | |
| skipped_epoch = 0 | |
| for epoch in range(skipped_epoch, self.epochs): | |
| self.model.train() | |
| if resumable_with_seed > 0 and epoch == skipped_epoch: | |
| progress_bar = tqdm( | |
| skipped_dataloader, | |
| desc=f"Epoch {epoch+1}/{self.epochs}", | |
| unit="step", | |
| disable=not self.accelerator.is_local_main_process, | |
| initial=skipped_batch, | |
| total=orig_epoch_step, | |
| smoothing=0.15 | |
| ) | |
| else: | |
| progress_bar = tqdm( | |
| train_dataloader, | |
| desc=f"Epoch {epoch+1}/{self.epochs}", | |
| unit="step", | |
| disable=not self.accelerator.is_local_main_process, | |
| smoothing=0.15 | |
| ) | |
| for batch in progress_bar: | |
| with self.accelerator.accumulate(self.model): | |
| text_inputs = batch["lrc"] | |
| mel_spec = batch["latent"].permute(0, 2, 1) | |
| mel_lengths = batch["latent_lengths"] | |
| style_prompt = batch["prompt"] | |
| style_prompt_lens = batch["prompt_lengths"] | |
| start_time = batch["start_time"] | |
| loss, cond, pred = self.model( | |
| mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler, | |
| style_prompt=style_prompt if self.use_style_prompt else None, | |
| style_prompt_lens=style_prompt_lens if self.use_style_prompt else None, | |
| grad_ckpt=self.grad_ckpt, start_time=start_time | |
| ) | |
| self.accelerator.backward(loss) | |
| if self.max_grad_norm > 0 and self.accelerator.sync_gradients: | |
| self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm) | |
| self.optimizer.step() | |
| self.scheduler.step() | |
| self.optimizer.zero_grad() | |
| if self.is_main: | |
| self.ema_model.update() | |
| global_step += 1 | |
| if self.accelerator.is_local_main_process: | |
| self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step) | |
| progress_bar.set_postfix(step=str(global_step), loss=loss.item()) | |
| if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0: | |
| self.save_checkpoint(global_step) | |
| if global_step % self.last_per_steps == 0: | |
| self.save_checkpoint(global_step, last=True) | |
| self.save_checkpoint(global_step, last=True) | |
| self.accelerator.end_training() | |