Spaces:
Sleeping
Sleeping
| """ | |
| ein notation: | |
| b - batch | |
| n - sequence | |
| nt - text sequence | |
| nw - raw wave length | |
| d - dimension | |
| """ | |
| from __future__ import annotations | |
| import torch | |
| from torch import nn | |
| import torch | |
| import torch.nn.functional as F | |
| from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRotaryEmbedding | |
| from transformers.models.llama import LlamaConfig | |
| from torch.utils.checkpoint import checkpoint | |
| from diffrhythm.model.modules import ( | |
| TimestepEmbedding, | |
| ConvNeXtV2Block, | |
| ConvPositionEmbedding, | |
| DiTBlock, | |
| AdaLayerNormZero_Final, | |
| precompute_freqs_cis, | |
| get_pos_embed_indices, | |
| ) | |
| # from liger_kernel.transformers import apply_liger_kernel_to_llama | |
| # apply_liger_kernel_to_llama() | |
| # Text embedding | |
| class TextEmbedding(nn.Module): | |
| def __init__(self, text_num_embeds, text_dim, max_pos, conv_layers=0, conv_mult=2): | |
| super().__init__() | |
| self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token | |
| if conv_layers > 0: | |
| self.extra_modeling = True | |
| self.precompute_max_pos = max_pos # ~44s of 24khz audio | |
| self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False) | |
| self.text_blocks = nn.Sequential( | |
| *[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)] | |
| ) | |
| else: | |
| self.extra_modeling = False | |
| def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722 | |
| batch, text_len = text.shape[0], text.shape[1] | |
| if drop_text: # cfg for text | |
| text = torch.zeros_like(text) | |
| text = self.text_embed(text) # b n -> b n d | |
| # possible extra modeling | |
| if self.extra_modeling: | |
| # sinus pos emb | |
| batch_start = torch.zeros((batch,), dtype=torch.long) | |
| pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos) | |
| text_pos_embed = self.freqs_cis[pos_idx] | |
| text = text + text_pos_embed | |
| # convnextv2 blocks | |
| text = self.text_blocks(text) | |
| return text | |
| # noised input audio and context mixing embedding | |
| class InputEmbedding(nn.Module): | |
| def __init__(self, mel_dim, text_dim, out_dim, cond_dim): | |
| super().__init__() | |
| self.proj = nn.Linear(mel_dim * 2 + text_dim + cond_dim * 2, out_dim) | |
| self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim) | |
| def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], style_emb, time_emb, drop_audio_cond=False): # noqa: F722 | |
| if drop_audio_cond: # cfg for cond audio | |
| cond = torch.zeros_like(cond) | |
| style_emb = style_emb.unsqueeze(1).repeat(1, x.shape[1], 1) | |
| time_emb = time_emb.unsqueeze(1).repeat(1, x.shape[1], 1) | |
| x = self.proj(torch.cat((x, cond, text_embed, style_emb, time_emb), dim=-1)) | |
| x = self.conv_pos_embed(x) + x | |
| return x | |
| # Transformer backbone using DiT blocks | |
| class DiT(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| dim, | |
| depth=8, | |
| heads=8, | |
| dim_head=64, | |
| dropout=0.1, | |
| ff_mult=4, | |
| mel_dim=100, | |
| text_num_embeds=256, | |
| text_dim=None, | |
| conv_layers=0, | |
| long_skip_connection=False, | |
| use_style_prompt=False, | |
| max_pos=2048, | |
| ): | |
| super().__init__() | |
| cond_dim = 512 | |
| self.time_embed = TimestepEmbedding(cond_dim) | |
| self.start_time_embed = TimestepEmbedding(cond_dim) | |
| if text_dim is None: | |
| text_dim = mel_dim | |
| self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers, max_pos=max_pos) | |
| self.input_embed = InputEmbedding(mel_dim, text_dim, dim, cond_dim=cond_dim) | |
| self.dim = dim | |
| self.depth = depth | |
| llama_config = LlamaConfig(hidden_size=dim, intermediate_size=dim * ff_mult, hidden_act='silu', max_position_embeddings=max_pos) | |
| llama_config._attn_implementation = 'sdpa' | |
| self.transformer_blocks = nn.ModuleList( | |
| [LlamaDecoderLayer(llama_config, layer_idx=i) for i in range(depth)] | |
| ) | |
| self.rotary_emb = LlamaRotaryEmbedding(config=llama_config) | |
| self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None | |
| self.text_fusion_linears = nn.ModuleList( | |
| [ | |
| nn.Sequential( | |
| nn.Linear(cond_dim, dim), | |
| nn.SiLU() | |
| ) for i in range(depth // 2) | |
| ] | |
| ) | |
| for layer in self.text_fusion_linears: | |
| for p in layer.parameters(): | |
| p.detach().zero_() | |
| self.norm_out = AdaLayerNormZero_Final(dim, cond_dim) # final modulation | |
| self.proj_out = nn.Linear(dim, mel_dim) | |
| def forward_timestep_invariant(self, text, seq_len, drop_text, start_time): | |
| s_t = self.start_time_embed(start_time) | |
| text_embed = self.text_embed(text, seq_len, drop_text=drop_text) | |
| text_residuals = [] | |
| for layer in self.text_fusion_linears: | |
| text_residual = layer(text_embed) | |
| text_residuals.append(text_residual) | |
| return s_t, text_embed, text_residuals | |
| def forward( | |
| self, | |
| x: float["b n d"], # nosied input audio # noqa: F722 | |
| text_embed: int["b nt"], # text # noqa: F722 | |
| text_residuals, | |
| cond: float["b n d"], # masked cond audio # noqa: F722 | |
| time: float["b"] | float[""], # time step # noqa: F821 F722 | |
| drop_audio_cond, # cfg for cond audio | |
| drop_prompt=False, | |
| style_prompt=None, # [b d t] | |
| start_time=None, | |
| ): | |
| batch, seq_len = x.shape[0], x.shape[1] | |
| if time.ndim == 0: | |
| time = time.repeat(batch) | |
| t = self.time_embed(time) | |
| c = t + start_time | |
| if drop_prompt: | |
| style_prompt = torch.zeros_like(style_prompt) | |
| style_embed = style_prompt # [b, 512] | |
| x = self.input_embed(x, cond, text_embed, style_embed, c, drop_audio_cond=drop_audio_cond) | |
| if self.long_skip_connection is not None: | |
| residual = x | |
| pos_ids = torch.arange(x.shape[1], device=x.device) | |
| pos_ids = pos_ids.unsqueeze(0).repeat(x.shape[0], 1) | |
| rotary_embed = self.rotary_emb(x, pos_ids) | |
| for i, block in enumerate(self.transformer_blocks): | |
| x, *_ = block(x, position_embeddings=rotary_embed) | |
| if i < self.depth // 2: | |
| x = x + text_residuals[i] | |
| if self.long_skip_connection is not None: | |
| x = self.long_skip_connection(torch.cat((x, residual), dim=-1)) | |
| x = self.norm_out(x, c) | |
| output = self.proj_out(x) | |
| return output | |